go back button
MIDASoft
By
September 05, 2019

Solution: Unaligned Tunnels with Geostatic Principal Stress Directions

Osvaldo P.M. Vitalia, Tarcisio B. Celestinob, Antonio Bobeta

 

"ABSTRACT

It is well-known that rock masses may present marked stress anisotropy. However, most of the tunnel analyses (numericalandanalytical)assumethetunnelaxisalignedwithoneoftheprincipalstressdirections. Whenthisis not the case, axial shear stresses appear, which then are neglected, as it is done in all analytical solutions available for tunnel analysis. Existing solutions may consider advanced nonlinear ground behavior (i.e. elasticbrittle-plastic with e.g. Hoek and Brown failure criteria), linear-elastic ground with transversely anisotropic properties, seismic loading, groundwater and support, etc., butall consider thatthe axis ofthe tunnel aligns with one of the principal far-field stresses. This is also what is generally assumed when conducting more sophisticated, three dimensional numerical analyses. In this paper, an analytical solution to calculate the stresses and displacements induced by far-field axial shear stresses is presented. Solutions for supported and unsupported tunnels are provided. The proposed analytical solution can be combined with the classical Kirsch and EinsteinSchwartz solutions to determine the complete stress and displacement fields around the tunnel. Further, the effects of stress anisotropy are discussed."

 

Read Now!

 



 

 

 

Search Keyword search-icon

      Popular Tags

      Research Paper Tunnel Foundation Excavation Underground Dam Construction stage analysis Soil Structure Interaction 2D Consolidation Pile Wall geotechnical Seepage Structural Analysis Tutorial 3D modelling Ground Rail Seismic Slope groundwater midas Gen pressure settlements Alpine Base Tunnels Analysis of Finite Element Methode Combined Pile-Raft Foundations Complex Concrete Conference Couple Analysis Coupled Analysis DDM DFI Design analysis Displacement Diversion Tunnel Double shield TBMs Dynamic El Nino Elastic modulus Embankment Excavating Finite Element Foundation Differential Settlements Fracod Geometry High-rise building Highly Expansive Hoek-Brown criterion Intersection Live Load Analysis Long Drought Season Long deep tunnels Mcgill Monte Carlo ONKALO Parametric study Progressive Failure Purdue Raft Foundations Safety Factor Shrinkage Simultaneous Blasting Soil Soil Modeling Spalling Spalling prediction Squeezing Structural Design Substructure Thermal Analysis Vertical stress Void Creation alluvial anisotropic properties axial shear stresses barrette raft base buoyancy phenomenon numerically collapse compact crystalline rock deepening elasticity finite element method foundation design fractured zone geological investigation geomechanical parameter geophysics ground resistance hydraulic behavior instrumentation junction limestone cavity linear-elastic ground load transfer curves load transfer mechanism mechanism non linear analysis numerical analysis of pile group numerical method o-cell loading packer permeability testing pile loading portal pressuremeter testing rail tunnel retaining wall seismic loading sensitivity analysis shaft shallow depths spillways standard penetration testing stress and strain subsea temporary supports