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Overview 

Various element libraries can be used for geometric modeling on FEA NX. These elements can be used for 

linear and nonlinear stress analysis, seepage analysis, consolidation analysis and various other coupled 

analyses. It is important to understand the usable elements and their respective properties to perform 

accurate finite element analysis. This chapter introduces the various theories behind techniques and 

backgrounds used in finite element modeling in FEA NX. 

 

The usable element types in FEA NX and their shapes and properties can be classified as follows: 

 

Scalar Element 

A single node, whose motion has a displacement or kinetic energy defined by the relative value with respect to 

a ground point. The element can be defined using 2 nodes, but the shape information such as the distance 

between the nodes is not taken into account. Point spring, matrix spring, mass and pile tip elements are 

classified as scalar elements. 

 

1 Dimensional shape element 

A line shape with two nodes, whose shape information (such as the distance between nodes) is used. 1D shape 

elements include truss, embedded truss, beam, embedded beam, geogrid 1D, pile and elastic link elements. 

 

2 Dimensional shape element 

A triangular or rectangular shape that can have 3/4/6/8 nodes. The 2D element can have a curvature in space. 

2D shape elements include plane strain, plane stress, shell, axisymmetric solid, geogrid 2D and gauging shell 

elements. Plain strain and axisymmetric solid elements are 2D shape elements, but they are used to express 

3D stress states. 

 

3 Dimensional shape element 

A tetrahedral, pentahedral or hexahedral shape that can have 4/5/6/8/10/13/15/20 nodes. A pentahedral 

element has either a wedge shape or a pyramid shape. Solid elements are classified as 3D shape elements. 
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Interface element 

An element used to express the relative behavior between faces or line-to-line. Interface elements include 

face-to-face Interface elements with 6/8/12/16 nodes, or line-to-line Interface elements with 4/6 nodes. 

 

Rigid link/interpolation element 

An element used to define rigid body motion between nodes or interpolate relative motion. It has 

characteristics similar to multi-point constraints. Rigid link and interpolation elements are classified as such. 

 

Infinite element 

Infinite Element consists of line/surface type element. Line type infinite element consists of 4/8 nodes and 

surface type infinite element consists of 6/8/15/20 nodes. 
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Finite Element Formulation 

Applying the stress-strain and strain-stress relationships from the principle of virtual work due to stress in 

variational form and using it as a constraint condition results in the Hu-Washizu principle
1,2

, which can be 

expressed as follows. 

 

( ) ( ( ) ) ( )T T T

extG d   


        u σ ε σ ε σ σ u ε    (3.2.1) 

 

extG
 : Virtual work due to external force 

u  : Displacement 

σ  : Stress 

ε  : Strain 

( )σ ε  : Stress calculated from strain 

  : Strain-stress relationship operator 

 

The equation above is the most general form that includes the equilibrium equation, constitutive equation and 

compatibility condition. If the strain and stress relationship is assumed to always be satisfied by the 

constitutive equation, it results in the Hellinger-Reissner principle
3, 4

 as follows:  

 

( ) ( ( ))T T

extG d  


      u σ σ u ε σ    (3.2.2) 

( )ε σ  : Strain calculated from stress 

 

Assuming that the relationship between ε  and u is satisfied by additional suitable conditions, the equation 

becomes the general principle of virtual work:  

 

( ) ( )T

extG d 


   u σ u     (3.2.3) 

 

                                                                                              
1 Hu, H.C., “On some variational principles in the theory of elasticity and the theory of plasticity,” Scintia Sinica, Vol. 4, 1955. 
2 Washizu, K., On the Variational Principles of Elasticity, Aeroelastic and Structural Research Laboratory, MIT, Technical Report, 1955 . 
3 Hellinger, E., “Der allgemeine Ansatz der Mechanik der Kontinua,” Encyclopadie der Mathernafischen Wissenschaften, Vol. 4, 1914. 
4 Reissner, E., “On a variational theorem in elasticity,” Journal of Mathematical Physics, Vol. 29, 1950. 
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Let us limit the integration region as a single element to apply the principle of virtual work on the finite 

element method. Interpolating the displacement u  as a shape function within a single element gives the 

following equation:  

 
h eu Nd      (3.2.4) 

N  : Shape function 

e
d  : Element node DOF 

 

Using the strain-displacement relationship h h e  ε u Bd ,the principle of virtual work for the entire element 

can be expressed as follows: 

 

e

T T T T

extG d   


    
  
d F d B DB d d Kd   (3.2.5) 

D  : Stress-strain relationship matrix 

 

In linear analysis, the total stiffness matrix K is independent of the total node DOF d , and the stiffness of 

individual elements e
K can be expressed as follows:  

 

e

e T d


 K B DB     (3.2.6) 

 

This equation is applicable for the analysis of elastic structures with small displacements, but it can also be 

applied to nonlinear analysis using the same principle. The finite element formulation process used in seepage 

analysis and consolidation analysis are explained in 3.10 and 3.11. 
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Shape Function 

Element definition starts from assuming a displacement field caused by a shape function. The basis function of 

a displacement field is equally applied to the pore pressure field in a seepage or consolidation element, unless 

specified otherwise. The examples in this section do not follow the summation convention. 1,2,3 dimensional 

shape functions are expressed in the natural coordinate system ( , ,   ). 

 

 

2 node shape function 

1

2

i
iN

 


, 1 1    

1 21, 1   
 

 

2 node Hermite shape function 
2 3

1 1 3 2N    
, 

2 3

2 2N l l l    
, 

2 3

3 3 2N   
, 

2 3

4N l l   
, 0 1   

l : Element length 

 

3 node shape function 

 1

1
1

2
N   

, 

 2

1
1

2
N   

, 

 2

3

1
1

2
N  

, 1 1    

 

3 node triangle 

1 1N    
, 2N 

, 3N 
 

 

6 node triangle 

  1 1 1 2 2N        
,  2 2 1N   

,  3 2 1N   
 

 4 4 1N     
, 5 4N 

,  6 4 1N     
 

 

  

Section 3 

3.1  
1 Dimensional shape 

3.2 
2 Dimensional shape 
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4 node rectangle 

  
1

1 1
4

i i iN     

 
 

8 node rectangle 

  
1

1 1 ( 1)
4

i i i i iN         

, 1,2,3,4i   

   21
1 1

2
i iN    

, 5,7i   

   21
1 1

2
i iN     

, 6,8i   
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Figure 3.3.1 Node position and 
natural coordinate system for 
triangular elements 

Figure 3.3.2 Node position and 
natural coordinate system for 
rectangular elements 
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4 node tetrahedron 

1 1N      
, 2N 

, 3N 
, 3N 

 

 

10 node tetrahedron 

1

1
2(1 )( )

2
N             , 2

1
2

2
N  

 
  

 
, 

3

1
2 ( )

2
N    , 

4

1
2 ( )

2
N   

,
5 4 (1 )N        , 

6 4N  , 
7 4 (1 )N        , 

8 4 (1 )N       
, 9 4N 

 , 10 4N 
 

 

 
6 node pentahedron 

1
(1 )(1 )

2
i iN       

, 1,4i   

1
(1 )

2
i iN    

, 2,5i   

1
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2
i iN    

, 3,6i   
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3.3 
3 Dimensional shape 

Figure 3.3.3 Node position and 
natural coordinate system for 
tetrahedral elements 
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15 node pentahedron 

 
1

1 (1 )( 2 2 )
2

i i iN             

, 1,4i   

1
(1 )( 2 2)

2
i i iN         

, 2,5i   

1
(1 )( 2 2)

2
i i iN         

, 3,6i   

2 (1 )(1 )i iN        
, 7,13i   

2 (1 )i iN    
, 8,14i   

2 (1 )(1 )i iN        
, 9,15i   

2

10 (1 )(1 )N      
, 

2

11 (1 )N   
, 

2

12 (1 )N   
 

 

 
5 node or 13 node pentahedra are pyramid-shaped and the degenerated shape function due to node coupling 

is widely used. However, because this shape function is known to have problems with numerical integration
5
, 

FEA NX uses the following form. 

 

5 node pentahedron 

1
{(1 )(1 ) }

4 1
i i i i iN


    


    

 , 1,2,3,4i   

5N 
 

                                                                                              
5 Bedrosian, G., “Shape functions and integration formulas for three-dimensional finite element analysis”, International Journal for Numerical 

Methods in Engineering, Vol. 35, 1992 
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Figure 3.3.4 Node position and 
natural coordinate system for 
pentaherdal (wedge) elements 
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13 node pentahedron 

1
( 1){(1 )(1 ) }

4 1
i i i i i i iN


       


      

 , 1,2,3,4i   

(1 )(1 )(1 )

2(1 )

i
iN

     



     


 , 6,8i   

(1 )(1 )(1 )

2(1 )

i
iN

      



     


 , 7,9i   

(1 2 )(1 2 )

(1 )

i i
iN

     



   


 , 10,11,12,13i   

5 (2 1)N   
 

 

 
 

8 node hexahedron 

1
(1 )(1 )(1 )

8
i i i iN        

, 1,2,3,...,8i   

 

20 node hexahedron 

1
(1 )(1 )(1 )( 2)

8
i i i i i i iN                

, 1,2,3,...,8i   

21
(1 )(1 )(1 )

4
i i iN       

, 9,11,17,19i   

21
(1 )(1 )(1 )

4
i i iN        

, 10,12,18,20i   




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(-1, -1, 0)

Figure 3.3.5 Node position and 
natural coordinate system for 
pentaherdal (pyramid) elements 
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21
(1 )(1 )(1 )

4
i i iN       

, 13,14,15,16i   

 

 
Numerical integration is needed to apply the shape functions above to the formulation process outlined in 

section 3.1. Numerical analysis is needed to calculate the stiffness matrix, mass matrix, load vector, element 

internal force, etc. FEA NX provides two numerical integration methods: the Gaussian Quadrature and the 

Lobatto Quadrature. 

 

Numerical 

integration method 
Matrix type Applicable elements 

Gaussian quadrature 

Stiffness 

Matrix 

Structural 

element 
All elements that use numerical integration 

Seepage 

element 
All elements that use numerical integration 

Mass Matrix 
Consistent mass All elements 

Lumped mass All elements using diagonal scaling
6
 

Lobatto quadrature 

Stiffness 

Matrix 

Structural 

element 
- 

Seepage 

element 
- 

Mass Matrix 

Consistent mass - 

Lumped mass 

3 node triangle, 4 node rectangle 

4 node tetrahedron, 6 node pentahedron 

8 node hexahedron 

 
 

                                                                                              
6 Hinton, E., Tock, T. and Zienkiewicz, O.C., “A Note on mass lumping and related processes in the finite element method,” Earthquake 

Engineering and Structural Dynamics, Vol. 4, 1976 
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Figure 3.3.6 Node position and 
natural coordinate system for 
hexahedral elements 

Table 3.3.1 Numerical integration 
method types and applicable 
elements 
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Same function is applied for displacement shape function and geometrical shape function for general element. 
However infinite element uses individual functions for displacement and geometrical shape. Infintie element 
uses following mapping function in order to express geometrically infinite shape. 
 

1

2

3

4

6

8

57

x

y





M1

M2

 
 
Infinite direction 

1

2

1
M







, 

2

1

1
M









 

 
 
 

3.4 
Mapping Function for 

Infintie Element 
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Porous Medium Consideration 

The consideration of porous media including pore water is a fundamental aspect of geotechnical analysis. 

Porous media are considered as multiphase materials on FEA NX and are based on an extension of Bishop's 

stress relationship
7
 which considers partially saturated states for Terzaghi's effective stress principle

8
. 

 

 ' ( 1) ap p    σ σ m     (3.4.1) 

σ  : Total stress 

'σ  : Effective stress 

m
 

: Second rank unit tensor 

p  : Pore pressure 

ap
 : Atmospheric pressure 

  : Effective stress parameter 

 

Here, atmospheric pressure
ap has an even distribution within models for practical problems; and because its 

size is relatively small, its effects are not considered.  

 

The effective stress parameter  represents the changing properties according to the degree of saturation of 

the porous medium. It has a value of '1' at the saturated state and a value between '0' and '1' at the unsaturated 

state. FEA NX assumes that the effective stress parameter and effective saturation are the same (
eS  ). The 

effective saturation is proportional to the change in actual degree of saturation and has a value between '0' 

and '1' for the minimum and maximum degree of saturation. 

 

min

max min

0 1e

S S
S

S S


  


    (3.4.2) 

 

, eS S
 : Saturation and effective degree of saturation 

max min,S S
 : Maximum and minimum value of the saturation function 

 

                                                                                              
7 Bishop, A.W., The principle of effective stress, Teknisk Ukeblad, 39 (1959) 859–863. 
8 Terzaghi, K. v., “Die Berechnung der Durchlässigkeitsziffer des tones aus dem verlauf der hydrodynamischenspanunngserscheinnu ngen”, 

Technical report II a,132 N 3/4, 125,138, Akademie der Wissenschaften in Wien. SitzungsberichteMathnaturwiss Klasse Abt, 1923. 
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Using the assumptions made above and in equation (3.4.1), the total stress and effective stress relationship 

can be ultimately expressed as follows. 

 

' p

p eS p

 

 

σ σ σ

σ m
    (3.4.3) 

pσ  : Pore stress 

 
Terzaghi's effective stress can be used as a foundation for analysis when the partially saturated state is not 
considered in the stress relationship. In this case, the pore stress can be expressed in the following form (Later 
explanations will be based on the use of Bishop's effective stress relationship for a more general concept): 
 

p p σ m     (3.4.4) 

 

The effective stress 'σ  is obtained through the constitutive equation, and represents the stress held by the soil 

skeleton.  

 

In FEA NX, the pore pressure p is set using the following methods: 

 

► Hydrostatic pressure due to water level 

► Nodal pore pressure of seepage analysis in seepage-stress coupled analysis 

► Nodal pore pressure DOF in consolidation analysis, stress-seepage coupled analysis 

 
The saturation function ( )S S p needs to be defined to perform analysis that considers partial saturation. The 

degree of saturation is a function of pore pressure and is defined by various function forms or a user input table 

form. The degree of saturation is fundamentally calculated using the pore pressure of the current state in 

undrained analysis (where the pore pressure changes during analysis) or consolidation analysis. However, to 

maintain the linearity of linear undrained analysis, the degree of saturation is calculated using the initial pore 

pressure.  

 

FEA NX provides various stress analysis for porous media with pore water, and the effects of the existing pore 

water is reflected in the calculation of the internal force and self weight. The change in density due to the 

existence of pore water is reflected in the calculation of the mass matrix for dynamic analysis and eigenvalue 

analysis. 

 

 '
e

e

e

e T

I e

e T

g

e T

S p d

d

d











  

 

 







f B σ m

f N g

M N N

    (3.4.5) 
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e

If
 

: Internal force of element e  

e

gf  
: Body force of element e due to gravity 

e
M  : Mass matrix of element e  

  : Homogenized density 

g
 

: Gravitational acceleration vector 

 

The homogenized density needed to calculate the self weight and inertial force is also assumed to be a 

function of the degree of saturation to accurately represent the partially saturated state, and can be expressed 

using the following equation: 

 
(1 )e unsat e satS S         (3.4.6) 

 
Here, 

sat and 
unsat are the soil densities at the saturated and unsaturated state, respectively. In other words, 

when considering partial saturation, the density has a value between these two densities. 

 

On the other hand, if partial saturation is not considered, the unsaturated state density is used for self weight 

and inertial force calculations. This occurs when the pore pressure is 0 or a negative value. If the pore pressure 

is positive, the saturated state density is used. 

 
( 0)

( 0)

unsat

sat

p

p







 


    (3.4.7) 

 

Table 3.4.1 lists the element types for porous medium analysis, supported analysis types and considered 

calculations for porous medium simulation. 
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Element type Applicable analysis type Porous medium consideration 

Linear elements 

Linear static analysis 

Self weight calculation 

Undrained stiffness calculation 

Internal force calculation 

Eigenvalue analysis 
Mass matrix calculation 

Undrained stiffness calculation 

Linear time history analysis 

Self weight calculation 

Mass matrix calculation 

Undrained stiffness calculation 

Internal force calculation 

Nonlinear elements 

(Nonlinear static analysis 

Slope stability analysis 

Self weight calculation 

Undrained stiffness calculation 

Internal force calculation 

Nonlinear time history analysis 

Self weight calculation 

Mass matrix calculation 

Undrained stiffness calculation 

Internal force calculation 

Nonlinear consolidation 

elements 

Consolidation analysis 

Stress/Seepage coupled analysis 

Self weight calculation 

Undrained stiffness calculation 

Internal force calculation 

 
  

Table 3.4.1 Porous medium 
consideration: element and 
analysis type 
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Supplement for Locking 
Phenomena 

The solution for finite elements obtained from the assumed displacement method is generally known to have 

very low accuracy. This is due to the locking phenomena. Resolving this problem to increase the accuracy of 

the solution is vital to the utilization of finite element programs. FEA NX uses the following methods to 

increase the precision of each element. Each method is not used independently, and 2 or more methods can 

be used simultaneously depending on the element. 

 

The mixed-hybrid formulation method can be classified depending on the assumed component from mixing 

variational theories or displacements. FEA NX uses the assumed stress method and mixed u-p method. 

The variational equation that has displacement and stress as variables according to the Hellinger-Reissner 

principle is as follows: 

 
1( ) ( )T T

extG d   


      u σ σ u D σ    (3.5.1) 

 

Assuming the displacement and stress of an arbitrary element due to the shape function as h eu Nd and 
h eu Nd respectively, substituting these values gives the right hand side of the equation above as follows: 

 

( )eT T e eT e e  d Q β β Qd Pβ     (3.5.2) 

 

Here: 

 

e

T

ed


 Q P B     (3.5.3) 

1

e

T

ed


 P P D P     (3.5.4) 

 
e
β is assumed not to be continuous between elements and can be eliminated within the element as shown 

below: 

 
1e eβ P Qd     (3.5.5) 

Substituting this into equation(3.5.2), the element stiffness can be expressed as follows: 

 
1e T K Q P Q     (3.5.6) 

Section 5 

5.1  
Mixed-Hybrid 

Formulation 
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Appropriately selecting the function P  for stress assumption is an essential aspect of determining the 

performance of the element. For example, the stress of a plane stress element or the in-plane direction stress
9
 

of a shell element is assumed as follows:  

 

1 0 0 0

ˆ 0 1 0 0

0 0 1 0 0

xx

yy

xy

 

 



   
   

      
     

σ Pβ TPβ T β    (3.5.7) 

 

Here, T is the coordinate transformation matrix of the contravariant stress component as shown below: 

 
2 2

11 21 11 21

2 2

12 22 12 22

11 12 21 22 11 22 12 21

2

ˆ 2

j j j j

j j j j

j j j j j j j j













   
   

    
     

σ Tσ    (3.5.8) 

 

The transformation matrix is calculated from the Jacobian of each element, and the value at the element 

center is often used.  

 

11 12

21 22

x y

j j

j jx y

 

 

  
    
    
    

   

J     (3.5.9) 

 

The mixed u-p method assumes the stress σ  of all components, but only assumes the hydrostatic stress or 

pressure p to be used as a solution
10

 to the locking phenomena in incompressible materials. The stress tensor 

is disassembled into the deviatoric stress and pressure as shown below, and the Hu-Washizu variational 

principle is used: 

 

( )

dev p

p Ktr

 



σ σ I

ε
    (3.5.10) 

devσ
 : Deviatoric stress 

K  : Bulk modulus 

( )tr ε  : Trace of strain 

                                                                                              
9 Pian, T.H.H. and Sumihara, K., “Rational approach for assumed stress finite elements,” International Journal for Numerical Methods in 

Engineering, Vol. 20, 1984 
10 Zienkiewicz, O.C., Rojek, J., Taylor, R.L. and Pastor, M., “Triangles and tetrahedral in explicit dynamics codes for solids,” Computer Methods 

in Applied Mechanics and Engineering, Vol. 43, 1998 
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The assumed natural strain method is widely used because it is similar to the classical assumed displacement 

method and can be applied easily. There are many cases
11,12,13

 where the ANS is applied to shell elements. This 

method is based on the Hu-Washizu principle, but can be regarded as a type of B-bar method
14

 when applied 

to the finite element method. 

 

 
For example, let us apply the ANS method on the lateral shear strain of a 4 node shell element as shown above. 

The components 
Z and 

Z of the natural coordinate system are accurate at positions B,D and A,C 

respectively. The strain at the integral point is interpolated using these values as shown below.  

 

1 1
(1 ) (1 )

2 2

B D

z z z              (3.5.11) 

1 1
(1 ) (1 )

2 2

A C

z z z              (3.5.12) 

 

The strain in the natural coordinate system can be changed to the spatial coordinate system using the 

following transformation formula. 

 

xz zT

yz z





 

 


      
    

     
γ T     (3.5.13) 

 

Here, T is the coordinate transformation matrix of the covariant component as shown below: 

  

                                                                                              
11 MacNeal, R.H., “Derivation of element stiffness matrices by assumed strain distribution,” Nuclear Engineering and Design, Vol. 70, 1982  

12 Hughes, T.J.R. and Tezduyar, T.E., “Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear 

isoparametric element,” Journal of Applied Mechanics, Vol. 48, 1981  

13 Bathe, K.J. and Dvorkin, E.N., “A formulation of general shell elements-The use of mixed interolation of tensorial components,” International 

Journal for Numerical Methods in Engineering, Vol. 22, 1986  

14 Hughe, T. J. R., The Finite Element Method, Prentice Hall Inc., Englewood Cliffs, NJ, 1987 





1 2
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5.2 
ANS: Assumed Natural 

Strain 

Figure3.5.1 Assumption for lateral 
shear strain 
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11 21

12 22

j j

j j

 
  
 

T     (3.5.14) 

 

The transformation matrix is calculated from the Jacobian of each element. Because the ANS method only 

changes the strain using equation (3.5.11-13), the matrix B  of the classical displacement assumption method 

is modified as follows:  

 
e  ε u Bd     (3.5.15) 

 

The enhanced assumed strain method is very similar to the method using the incompatible mode
15

 and their 

results are identical. However, the two differ in that the EAS is theoretically based on the Hu-Washizu principle 

and starts from the strain assumption, not displacement
16

. The following Hu-Washizu variational equation 

assumes 3 variables (displacement, strain, stress). 

 

( ) ( ) ( )T T T

extG d   


        u σ ε Dε σ σ u ε    (3.5.16) 

 

The strain ε is assumed to be a sum of the compatible and incompatible (improved strain assumption) 

elements calculated from the displacement. 

 

 ε u ε     (3.5.17) 

 

Substituting this into equation (3.5.16) and simplifying gives the following equation: 

 

( ) ( ) ( )T T T

extG d   


          u D u ε ε D u Dε σ σ ε   (3.5.18) 

 

If the stress distribution and incompatible strain is assumed to be perpendicular within the element, the 

equation consisting of only displacement and improved strain are as follows: 

 

( ) ( )T T

extG d  


        uD u ε ε D u Dε    (3.5.19) 

 

Substituting the displacement and improved strain due to the shape function as h eu Nd  and eε Gα  

respectively for an arbitrary element, the right hand side of the equation above is as follows:  

 
eT e e eT e e eT e e eT e e

dd d d       d K d d K α α K d α K α    (3.5.20) 

                                                                                              
15 Taylor, R.L., Beresford, P.J. and Wilson, E.L., “A non-conforming element for stress analysis,” International Journal for Numerical Methods in 

Engineering, Vol. 10, 1976 

16 
Simo, J.C. and Rifai, M.S., “A class of mixed assumed strain methods and the method of incompatible modes,” International Journal for 

Numerical Methods in Engineering, Vol. 29, 1990 

5.3 
EAS: Enhanced 

Assumed Strain 
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Here, e

ddK is the classical element stiffness from the assumed displacement and e

dK and e

K are as follows:  

 

e

e T

d ed


 K B DG      (3.5.21) 

e

e T

ed


 K G DG      (3.5.22) 

 
e

α is assumed to be the discontinuity between elements and since there is no external work for 
eα , it can be 

eliminated within the element as shown below:  

 
1e e e e

d 

 α K K d      (3.5.23) 

 

Substituting this into equation (3.5.20) gives the element stiffness as follows: 

 
1e e e e e

dd d d  

 K K K K K     (3.5.24) 

 

Selecting the function G  for improved strain assumption is a vital part in determining the performance of the 

element. 

 

The strain at the integral point of a low order has a more accurate value than at different positions
17,18

. Also, 

because the element locking phenomena is generally caused by the unnecessary powers of strain, these higher 

order strain shapes can be removed by numerical integration. However, reduced integration can worsen the 

numerical properties of the stiffness matrix and can cause the spurious zero energy mode or hourglass mode. 

 

Generally, the strain of 3D lower order elements can be simplified using the following equation: 

 

0 1( ( , , )) e    ε u B B d     (3.5.25) 

 

Removing the element locking phenomena by applying a lower integration order is the same as using just
0B , 

and the same as evaluating the strain at the center of the element. When using the strain at the element 

center, the patch test where uniform deformation is applied may not be satisfied. This problem is generally 

solved by changing 
0B to

0B
19

. The average strain 
0B satisfies the following equation.  

  

                                                                                              
17 Barlow, J., “A stiffness matrix for a curved membrane shell,” Conf. Recent Advances in Stress Analysis, Royal Aeron. Soc., 1968 
18 Barlow, J., “Optimal stress locations in finite element models,” International Journal for Numerical Methods in Engineering. Vol. 10, 1976 
19 

Flanagan, D.P. and Belytschko, T., “A uniform strain hexahedron and quadrilateral with orthogonal hourglass control,” Interna tional Journal 

for Numerical Methods in Engineering, Vol. 17, 1981 

5.4 
Reduced Integration 

5.5 
Reduced Integration 

Stabilization 
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0

1

e
e

e

d
V 

 B B     (3.5.26) 

 

Here,
eV is the element volume. When using only the corresponding average strain

0B , the deformation 

energy for the spurious zero energy mode is not considered. Since this phenomenon is particularly severe for 

lower order elements, a stabilization method is needed. Various stabilization methods called "Hourglass 

Control" exist, and FEA NX uses the physical stabilization method
20

 suggested by Puso. For example, the 
1B  

necessary to calculate the stabilized strain for an 8 node hexagonal element in the natural coordinate system is 

as follows: 

 

1                B B B B B B B    (3.5.27) 

 

Using all of the strain from the equation above erases the effects of the reduced integration and hence, some 

of the shear strain is removed. 

 

Using the average strain and applying the stabilization method has the same effect as selective reduced 

integration. It also has a fast calculation speed because the numerical integration process is substituted by the 

following equation: 

 

[] []
8e

e
e

V
d d d d  


       (3.5.28) 

 

For non-conforming elements, the method of strain disassembly is used to make the compatibility condition 

between elements into integral form. The EAS method above can also be classified as a type of non-

conforming element. Generally, the integral form of the compatibility condition between elements is 

expressed as follows: 

 
*

,
e e

i j i ju d u n dS
 

      (3.5.29) 

*u  : Assumed displacement within the element 

u
 : Assumed displacement on the outer surface of the element 

jn

 
: Vector perpendicular to the outer surface of the element (direction cosine) 

j
 

: j direction differentiation 

 

The displacement assumed in the element is generally composed of the shape function part and other 

additional parts. 

 

                                                                                              
20 

Puso, M.A., “A highly efficient enhanced assumed strain physically stabilized hexahedral element,”  International Journal for  Numerical 

Methods in Engineering, Vol. 49, 2000 

5.6 
Non-conforming 

Element 
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* e u Nd Pλ     (3.5.30) 

 

The displacement assumed on the outer surface of the element is also composed of the shape function part 

and other additional parts. However, the assumed displacement is expressed as an interpolated form of the 

node displacement: 

 
e e u Nd Md     (3.5.31) 

M  : Added shape function (  N ) 

 

The  in the equation above is an arbitrary coefficient and an appropriate value is used, based on the element 

convergence or the accuracy of the solution. Substituting equations (3.5.30) and (3.5.31) into equation (3.5.29) 

can calculate λ using e
d . Using the calculated λ , the element strain can be expressed as follows: 

  

( )e  ε Bd P λ     (3.5.32) 

 

The B  matrix in the assumed displacement method is modified for non-conforming elements as shown below: 

 
e  ε u Bd     (3.5.33) 
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Continuum Elements 

Continuum elements are used for volume modeling, such as soils in ground analysis, solid elements in 3D 

analysis, olane strain elements in 2D analysis and axisymmetric solid elements in axisymmetric analysis are all 

examples of continuum elements. 

 

Solid elements are often used for modeling structures with volume, such as soils, thick walls, etc. The usable 

solid elements in FEA NX are tetrahedral, pentahedral and hexahedral shapes with 4/5/6/8/10/13/15/20 nodes. 

Pentahedral elements include wedge shapes and pyramid shapes. 

 

Coordinate system 

 

The entity coordinate system (ECS) of a tetrahedral element is the same as applying the ECS definition rule on 

a plane stress element on a triangular shape composed of nodes 1,2,3.  

The ECS of a pentahedral wedge element is the same as applying the ECS definition rule on a plane stress 

element on a triangular shape composed of the intermediate points between nodes 1 and 4, nodes 2 and 5, 

and nodes 3 and 6.  

The ECS of a pentahedral pyramid element is the same as applying the ECS definition rule on a plane stress 

element on a rectangular shape composed of nodes 1,2,3,4.  

For a hexahedral element, a vector adjacent to the ECS is defined first as shown below:  

 

► r : Vector at the intermediate point of nodes 1,5,8,4 in the direction of the intermediate point of nodes 

2,6,7,3 

► s : Vector at the intermediate point of nodes 1,2,6,5 in the direction of the intermediate point of nodes 

4,3,7,8 

► t : Vector at the intermediate point of nodes 1,2,3,4 in the direction of the intermediate point of nodes 

5,6,7,8 

 

The rectangular coordinate system that is closest to the 3 vectors above becomes the ECS of the hexagonal 

element.  

 

  

Section 6 

6.1  
Solid Elements 
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DOF 

The global coordinate system (GCS) of a Solid element has a displacement DOF in the x , y , z  axis 

directions. 

 

 
T

i i i iu v wu      (3.6.1) 

 

Stress and strain 

A solid element considers the stress and strain defined by the GCS. Its components are as follows:  
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ε     (3.6.2) 

(3 dimensional stress and strain)     
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Figure 3.6.1 Coordinate system of 
Solid elements 
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Load 

The loads applied to a Solid element are as follows: 

 

Load type Explanation 

Self-weight due to gravity Applied to the material density 

Pressure load Distributed load applied on an element face 

Water pressure load Distributed load applied on an element face 

Size determined by pore pressure/water level 

Element temperature load Element temperature that causes volumetric deformation 

Prestress/Initial equilibrium force Initial stress of an element and the corresponding equilibrium 

force 

 

Element result 

On FEA NX, the results of a solid element are printed in the user defined reference coordinate system. The 

selectable element result coordinate systems (ERCS) are the ECS, MCS and arbitrary coordinate system.  

 

  

GCS x

GCS y
GCS z

,xx xx 

,xy xy 

,zx zx 

,yy yy 

,xy xy 

,yz yz 

,zz zz 

,yz yz 

,zx zx 

Figure 3.6.2 Stress/strain of a 
Solid element 

Table 3.6.1 Loads applied on Solid 
elements 



 

 

38 | Section 6. Continuum Elements 
 
 
 

Chapter 3. Elements 
 

ANALYSIS REFERENCE 

Result article Explanation 

Stress 

Stress component 
Position : vertex/element center 

xx , 
yy , 

zz , 
xy , 

yz , 
zx  

Principal stress 
Position : vertex/element center 

1P , 
2P , 

3P , Principal stress direction 

Von-Mises stress 
Position : vertex/element center 

v  

Max shear stress 
Position : vertex/element center 

max  

Octahedral stress 
Position : vertex/element center 

o  

Mean pressure 
Position : vertex/element center 

0p  

Strain 

Strain component 
Position : vertex/element center 

xx , 
yy , 

zz , 
xy , 

yz , 
zx  

Principal strain 
Position : vertex/element center 

1E , 
2E , 

3E , Principal strain direction 

Von-Mises strain 
Position : vertex/element center 

v  

Max shear strain 
Position : vertex/element center 

max  

Octahedral strain 
Position : vertex/element center 

o  

Mean compression 
Position : vertex/element center 

0c  

 
The results of a Solid element including pore water are printed in the effective stress and total stress 
components, and the total pore stress and excess pore stress are additionally printed. 
 

Result article Explanation 

Stress 

Stress component 

(Effective and total) 

Position : vertex/element center 

xx  , 
yy  , 

zz , 
xy  , 

yz  , 
zx   

xx , 
yy , 

zz  

Pore stress 

(Total and excessive) 

Position : vertex/element center 

,totalp , 
,excessivep  

Mean pressure 

(Effective and total) 
Position : vertex/element center 

Table 3.6.2 Result article of Solid 
elements 

Table 3.6.3 Results of a Solid 
element including pore water 
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0p , 
0p  

Element method selection 

The usable Solid elements of FEA NX depend on the various element performance improvement methods. 

The following table lists the name, related finite element method and integration method. The standard value 

is shaded. 

 

Shape 
Number 

of nodes 
Name Element method 

Numerical 

integration 

of stiffness 

matrix 

Calculation 

method for 

concentrated 

mass 

Tetrahedron 4 
Full integration 

Assumed 

displacement 
1 Point Lobatto 

Enhanced EAS, u-p mixing 4 Points Lobatto 

Wedge 6 

Full integration 
Assumed 

displacement 
3X2 Points Lobatto 

Reduced integration 

(stabilized) 

Reduced Integration 

(stabilized) 
1X1 Point Lobatto 

Hybrid Mixed method 3X2 Points Lobatto 

Pyramid 5 

Full integration 
Assumed 

displacement 
4X2 Points 

Diagonal term 

scaling 

Reduced integration Reduced Integration 1X1 Point 
Diagonal term 

scaling 

Hybrid Mixed method 4X2 Points 
Diagonal term 

scaling 

Hexahedron 8 

Full integration 
Assumed 

displacement 

2X2X2 

Points 
Lobatto 

Reduced integration 

(stabilized) 

Reduced Integration 

(stabilized) 
1X1X1 Point Lobatto 

Hybrid Mixed method 
2X2X2 

Points 
Lobatto 

Tetrahedron 10 

Full integration 
Assumed 

displacement 
4 Points 

Diagonal term 

scaling 

Enhanced 
Nonconforming 

element 
4 Points 

Diagonal term 

scaling 

Wedge 15 

Full integration 
Assumed 

displacement 
3X3 Points 

Diagonal term 

scaling 

Reduced integration Reduced Integration 3X2 Points 
Diagonal term 

scaling 

Hybrid Mixed method 3x3 Points 
Diagonal term 

scaling 

Table 3.6.4 Performance 
improvement methods used on 
Solid elements  



 

 

40 | Section 6. Continuum Elements 
 
 
 

Chapter 3. Elements 
 

ANALYSIS REFERENCE 

      

Pyramid 13 Full integration 
Assumed 

displacement 
9X3 Points 

Diagonal term 

scaling 

Hexahedron 20 

Full integration 
Assumed 

displacement 
3X3X3 Points 

Diagonal term 

scaling 

Reduced integration Reduced Integration 
2X2X2 

Points 

Diagonal term 

scaling 

Hybrid Mixed method 3X3X3 Points 
Diagonal term 

scaling 

 

The characteristics and precautions for each element method are as follows:  

 

►4 node element : The displacement results are similar regardless of the method, but elements using the EAS 

and u-p mixed methods display more accurate stress results. 

► 6 node element : The performance is vastly superior for elements using the mixed method for thin 

structures. 

► 8 node element : The performance is vastly superior for elements using the mixed method or reduced 

integration method for structures experiencing bending. 

►10 node element : The results are similar regardless of the method, but non-conforming elements for thin 

structures display relatively flexible results.  

► 20 node element : All methods display accurate results. Elements using the mixed method for thin 

structures display superior performance.  

 

Nonlinear analysis 

Geometric nonlinearity can be considered for solid elements and material nonlinearity can be considered for 

elastic and nonlinear elastic materials. The additional result articles for nonlinear material usage is listed in the 

table below, and the material states are expressed using symbols.  

 

Result article Explanation 

Stress 

Equivalent stress 
Position : Integral point 

Calculated according to plastic model, 
eq  

Material status 

Position : Integral point 

Elastic: - 

Plastic/Nonlinear elastic:  

Unloading/reloading:  

Tension failure:  

Cap failure:  

Strain Equivalent strain 
Position : Integral point 

Calculated according to plastic model, 
eq  

Table 3.6.5 Nonlinear analysis 
result article of Solid elements  
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Effective plastic strain 
Position : Integral point 

pe  

 

A plane strain element is a triangular or rectangular element consisting of 3/4/6/8 nodes in a plane. It is mainly 

used for the ground and structural analysis of dams or tunnels, which maintains a consistent section and has a 

long length in the direction normal to the section. Because stress exists in the element thickness direction, it is 

technically not a 2D stress state. A plane strain element can be modeled in 3D space but generally it is 

modeled in the particular coordinate plane (x-y, x-z, y-z) on the GCS for convenience. 2D modeling on FEA NX 

is done in the x-y plane. 

 

Coordinate system 

The ECS of a triangular plane strain element has the z axis in the direction normal to the element plane and the 

x axis in the direction from node 1 to 2. Similarly, for a rectangular element, the z axis is set in the direction 

normal to the element plane and the x axis is set in the direction that bisects the intersection angle between 

diagonal lines made by nodes 1 and 3, and nodes 4 and 2. The finite element formulation of a plane strain 

element is done about the ECS. 

 

 
 

To use a transversely isotropic material on a plane strain element, the major material axis needs to be in an 

appropriate direction. In this case, the MCS is used, and FEA NX uses 2 methods to decide the material 

direction of a plane strain element. The first method uses the rotation angle between the line made by nodes 1 

and 2, as shown in figure 3.6.3. 
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6.2 
Plane strain Element 

Figure 3.6.3 Coordinate system of 
Plane strain elements 

Figure 3.6.4 Definition of material 
axis for Plane strain elements 
using angles 
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The second method uses an arbitrary coordinate system where the x axis is projected onto the element plane 

and that direction is assumed to be the major material axis, as shown in figure 3.6.4. The dotted lines represent 

the major material axes specified within the element. This projection method is equally applied when setting 

the ERCS for element result verification. 

 
 

DOF 

Plane strain elements have directional DOF in the ECS x and y axis directions. 

 

 
T

i i iu vu     (3.6.3) 

 

Stress and strain 

Plane strain elements are expressed using the 2D stress state and lateral normal stress. However, only 2D 

stresses are used for finite element formulation and thus the resultant force and in plane directional strain 

defined by the ECS are taken into account. 
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(In plane directional resultant force and strain)    
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Figure 3.6.5 Definition of material 
axis for Plane strain elements 
using a coordinate system 
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Load 

The loads applied to a plane strain element are as follows: 

 

Load type Explanation 

Self-weight due to gravity Applied to the material density 

Pressure load Distributed load applied on an element side 

Water pressure load 
Distributed load applied on an element side 

Size determined by pore pressure/water level 

Element temperature load 
Element temperature that causes in-plane directional 

deformation 

Prestress/Initial equilibrium force 
Initial stress of an element and the corresponding 

equilibrium force 

When a temperature load is applied to a plane strain element, thermal expansion in the thickness direction is 

constrained by the planar deformation state and thus the in plane directional deformation due to the Poisson 

effect increases. 

 

Element result 

On FEA NX, the results of a plane strain element are printed in the user defined reference coordinate system. 

The selectable element result coordinate systems (ERCS) are the ECS, MCS and arbitrary coordinate system. 

 

Result Article Explanation 

Stress 

Stress component 
Position : vertex/element center 

xx , 
yy , 

zz , 
xy  

Principal stress 
Position : vertex/element center 

1P , 
2P , Principal stress direction 

Von-Mises stress 
Position : vertex/element center 

v  

Max shear stress 
Position : vertex/element center 

max  

Mean pressure 
Position : vertex/element center 

0p  

Strain 

Strain component 
Position : vertex/element center 

xx , 
yy , 

zz , 
xy  

Principal strain 
Position : vertex/element center 

1E , 
2E , Principal strain direction 

Von-Mises strain 
Position : vertex/element center 

v  

Table 3.6.6 Loads applied on 
Plane strain elements 

Table 3.6.7 Result article of Plane 
strain elements 
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Max shear strain 
Position : vertex/element center 

max  

Mean compression 
Position : vertex/element center 

0c  

Force/ 

Moment 
In-plane force 

Position : vertex 

xxN , 
yyN , 

xyN  

 

The results of a solid element including pore water are printed in the effective stress and total stress 

components, and the total pore stress and excess pore stress are additionally printed. 

 

Result article Explanation 

Stress 

Stress component 

(Effective and total) 

Position : vertex/element center 

xx  , 
yy  , 

zz , 
xy   

xx , 
yy , 

zz  

Pore stress 

(Total and excessive) 

Position : vertex/element center 

,totalp , 
,excessivep  

Mean pressure 

(Effective and total) 

Position : vertex/element center 

0p , 
0p  

 

Element thickness 

The thickness of a plane strain element needs to be consistent to satisfy the planar deformation condition. The 

Plane strain element thickness can be directly input in FEA NX, or assumed to be 1 if no value is input.  

 

Element method selection 

The usable Plane strain elements of FEA NX depend on the various element performance improvement 

methods. The following table lists the name, related finite element method and integration method. The 

standard value is shaded. 

 

Shape 

Number 

of 

nodes 

DOF Name Element method 

Numerical 

integration of 

stiffness 

matrix 

Calculation 

method for 

concentrated 

mass 

Triangle 3   
Assumed 

displacement 
1 Point Lobatto 

Rectangle 4  Full integration 
Assumed 

displacement 
2X2 Points Lobatto 

Table 3.6.8 Result article of Plane 
strain elements including pore 
water 

Table. 3.6.9 Performance 
improvement methods used on 
Plane strain elements 
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Reduced 

integration 

(stabilized) 

Reduced 

Integration 

(stabilized) 

1X1 Point Lobatto 

Hybrid Mixed method 2X2 Points Lobatto 

Triangle 6   
Assumed 

displacement 
3 Points 

Diagonal term 

scaling 

Rectangle 8  

Full integration 
Assumed 

displacement 
3X3 Points 

Diagonal term 

scaling 

Reduced 

integration 

Reduced 

Integration 
2X2 Points 

Diagonal term 

scaling 

Hybrid Mixed method 3X3 Points 
Diagonal term 

scaling 

 

The characteristics and precautions for each element method are as follows: 

 

► 3 node element: Be aware that the element flexibility is greatly decreased when not enough elements are 

used, resulting in an inaccurate solution.  

► 4 node element: The accuracy is generally high except for isoparametric elements which only use the 

assumed displacement method.  

► 6 node element: The element performance can be greatly diminished when the node on an element side is 

not at its center. 

► 8 node element: The results are generally accurate for all methods. Elements using reduced integration 

show similar performance for elements using the mixed method and show high calculation efficiency. 

However, the spurious zero energy mode can appear.  

 

Nonlinear analysis  

Geometric nonlinearity can be considered for Plane strain elements and material nonlinearity can be 

considered for elastic and nonlinear elastic materials. The additional result articles for nonlinear material 

usage are listed in the table below, and the material states are expressed using symbols. 

 

Result article Explanation 

Stress 

Equivalent stress 
Position : Integral point 

Calculated according to plastic model, 
eq  

Material status 

Position : Integral point 

Elastic: - 

Plastic/Nonlinear elastic:  

Unloading/reloading:  

Tension failure:  

Cap failure:  

Table 3.6.10 Nonlinear analysis 
result article of Plane strain 
elements 
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Strain 

Equivalent strain 
Position : Integral point 

Calculated according to plastic model, 
eq  

Effective plastic strain 
Position : Integral point 

pe  
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Axisymmetric solid elements use models, whose shape, material, load conditions etc. satisfy the axisymmetric 

condition about an arbitrary axis for analysis. Axisymmetric solid elements cannot be mixed with other 

element types and can be modeled using 3/4/6/8 node triangular and rectangular shapes. 

 

Coordinate system 

To use a transversely isotropic material on an axisymmetric solid, the major material axis needs to be in an 

appropriate direction. In this case, the MCS is used. FEA NX uses two methods to decide the material direction 

of a plane strain element. The first method uses the rotation angle between the GCS x axis, as shown in figure 

3.6.5.  

 

 
 

The second method uses an arbitrary coordinate system, where the x axis is projected onto the element plane 

and that direction is assumed to be the major material axis. The dotted lines represent the major material axes 

specified within the element. This projection method is equally applied when setting the ERCS for element 

result verification. 

 

DOF 

Axisymmetric solid elements have displacement DOF in the GCS x (radial direction) and y directions. 

 

 
T

i i iu vu     (3.6.5) 

 

Stress and strain 

Axisymmetric solid elements consider strain and stress defined on the GCS, and the components are as follows:  
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(In-plane/circumferential direction stress and strain)    
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6.3 
Axisymmetric Solid 

Elements 

Figure 3.6.6 Definition of material 
axis for Axisymmetric solid 
elements using angles 
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Load 

The loads applied to axisymmetric solid elements are as follows: 

 

Load type Explanation 

Self-weight due to gravity Applied to the material density 

Pressure load 

Distributed load applied on an element side 

(Load acting on the outer surface of a structure when considering 

axisymmetry.) 

Water pressure load 

Distributed load applied on an element side 

Size determined by pore pressure/water level 

(Load acting on the outer surface of a structure when considering 

axisymmetry.) 

Element temperature load 
Element temperature that causes deformation of the axissymetric 

section 

Prestress/Initial equilibrium force Initial stress of an element and the corresponding equilibrium force 

 

Element result 

On FEA NX, the results of an axisymmetric solid element are printed in the user defined reference coordinate 

system. The selectable systems are the ECS, MCS and arbitrary coordinate system. The element result 

component direction has the ,x y direction and a circumferential direction of .  
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Figure 3.6.7 Stress/strain of an 
Axisymmetric solid element 

Table 3.6.11 Loads applied on 
Axisymmetric solid elements 
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Result Article Explanation 

Stress 

Stress component 
Position : vertex/element center 

xx , 
yy , 

 , 
xy  

Principal stress 
Position : vertex/element center 

1P , 
2P  

Von-Mises stress 
Position : vertex/element center 

v  

Max shear stress 
Position : vertex/element center 

max  

Strain 

Strain component 
Position : vertex/element center 

xx , 
yy , 

 , 
xy  

Principal strain 
Position : vertex/element center 

1E , 
2E  

Von-Mises strain 
Position : vertex/element center 

v  

Max shear strain 
Position : vertex/element center 

max  

 

The results of an axisymmetric solid element including pore water are printed in the effective stress and total 

stress components, and the total pore stress and excess pore stress are additionally printed.  

 

Result article Explanation 

Stress 

Stress component 

(Effective and total) 

Position : vertex/element center 

xx  , 
yy  , 

  , 
xy   

xx , 
yy , 

  

Pore stress 

(Total and excessive) 

Position : vertex/element center 

,excessivep , 
,totalp  

Mean pressure 

(Effective and total) 

Position : vertex/element center 

0p , 
0p  

 

Element method selection 

The usable axisymmetric solid elements of FEA NX depend on the various element performance improvement 

methods. The following table lists the name, related finite element method and integration method. The 

standard value is shaded. 

 

  

Table 3.6.12 Result article of 
Axisymmetric solid elements 

Table 3.6.13 Results of an 
Axisymmetric solid element 
including pore water 



 

 

50 | Section 6. Continuum Elements 
 
 
 

Chapter 3. Elements 
 

ANALYSIS REFERENCE 

Shape 
Number 

of nodes 
Name 

Element 

method 

Numerical 

integration of 

stiffness 

matrix 

Calculation method 

for concentrated 

mass 

Triangle 3  
Assumed 

displacement 
3 Points Lobatto 

Rectangle 4 

Full 

integration 

Assumed 

displacement 
2X2 Points Lobatto 

Hybrid Mixed method 2X2 Points Lobatto 

Triangle 6  
Assumed 

displacement 
3 Points 

Diagonal term 

scaling 

Rectangle 8  
Assumed 

displacement 
3X3 Points 

Diagonal term 

scaling 

 

Nonlinear analysis 

Geometric nonlinearity can be considered for axisymmetric solid elements and material nonlinearity can be 

considered for elastic and nonlinear elastic materials. The additional result articles for nonlinear material 

usage are listed in the table below. The material states are expressed using symbols. 

 

Result article Explanation 

Stress 

Equivalent stress 
Position : Integral point 

Calculated according to plastic model, 
eq  

Material status 

Position : Integral point 

Elastic: - 

Plastic/Nonlinear elastic:  

Unloading/reloading:  

Tension failure:  

Cap failure:  

Strain 

Equivalent strain 
Position : Integral point 

Calculated according to plastic model, 
eq  

Effective plastic strain 
Position : Integral point 

pe  

 

  

Table 3.6.14 Performance 
improvement methods used on 
Axisymmetric solid elements  

Table 3.6.15 Nonlinear analysis 
result article of Axisymmetric 
solid elements 
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Structural Elements 

Structural elements are used to effectively express particular load states and Truss, Embedded Truss, Beam, 

Embedded Beam, Plane Stress, and Shell are classified as such. During modeling, the load state of the 

structural element and its deformation condition need to be checked to ensure that they are appropriate for 

the assumptions made.  

 

Truss elements are a 1D line element defined by 2 nodes. They are generally used to model space Trusses or 

diagonal braces that have a relatively longer length than the cross section. It is generally used for modeling 

structural elements such as anchors, nails and rockbolts, which ignore flexural behavior. 

 

 
 

Coordinate system 

The ECS x axis direction of a truss element is the direction from node 1 to node 2. Finite element formulation is 

done with reference to the ECS. 

 

DOF 

Truss elements have a displacement and rotation DOF in the ECS x axis direction. 

 

 i iuu ,  i xiθ     (3.7.1) 

 

Stress and strain 

Truss elements express the ECS defined axial deformation and torsion, as shown in figure 3.7.1. 

 

 xxNN ,  xxε    (3.7.2) 
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Section 7 

7.1  
Truss Element 

Figure 3.7.1 Stress/strain and 
coordinate system of Truss 
elements 
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       (Axial force and strain)     

 xMT ,  xφ     (3.7.3) 

(Torsional moment and torsion)     

 

Load 

The loads applied to Truss elements are as follows: 

 

Load type Explanation 

Self-weight due to gravity Applied to the material density 

Element temperature load 
Element temperature that causes length 

deformation 

Prestress/Initial equilibrium force 
Initial element axial force and corresponding 

equilibrium force 

 

Element result 

The truss element result articles are as follows. The reference coordinate system is always the ECS. 

 

Result article Explanation 

Stress 

Axial stress Position : element center, 
xx  

Torsional stress 

Position : element center  

Calculated from torsional stress coefficient c  

( /Tc J  ) 

Strain 
Axial strain Position : element center, 

xx  

Torsional strain Position : element center 

Force 

/Moment 

Axial force Position : element center, 
xxN  

Torque Position : element center, 
xM  

 

Nonlinear analysis 

Geometric nonlinearity can be considered for truss elements; and von Mises elastic materials can be applied. 

Also, truss elements can have gaps/hooks with a set initial spacing and compressive/tensile and nonlinear 

elastic material properties with allowable loading. 

 

Result article Explanation 

Stress 

Equivalent stress 
Position : element center 

Calculated according to plastic model, 
eq  

Plastic status 
Position : element center 

Elastic/Plastic, 0 / 1  

Strain Equivalent strain Position : element center 

Table 3.7.1 Loads applied on Truss 
elements 

Table 3.7.2 Result articles of Truss 
elements 

Table 3.7.3 Nonlinear analysis 
result articles of Truss elements 
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Calculated according to plastic model, 
eq  

Effective plastic strain 
Position : element center 

pe  

 

The input shape, coordinate system, material property, etc of embedded truss elements are identical to that of 

truss elements. Embedded truss elements are generally used to model structural elements such as anchors, 

nails and rockbolts, which ignore flexural behavior. Also, gaps/hooks with a set initial spacing and 

compressive/tensile only and nonlinear elastic material properties with allowable loading can be applied. This 

information is introduced in chapter 4.  

 

When using truss elements with different elements, the nodes must be shared. However, embedded truss 

elements do not require node sharing and are hence more convenient for modeling and analysis. Embedded 

truss elements are used in an embedded form inside a mother element, and the mother element can be a 

plane strain element or a solid element. 

 

 
 

The mother element is determined as the element that includes each embedded truss element node within 

itself, and the multi-point constraint is used to automatically constrain the nodal displacement of the 

embedded truss element to be the same as the internal displacement of the mother element. 

 

 
 

1

2

Mother 

element 1

Mother 

element 2

,xx xxN 

1

2

ECS x

,xx xxN 

7.2 
Embedded truss 

Element 

Figure 3.7.2 Embedded truss 
element within a mother element 
 

Figure 3.7.3 Coordinate system 
and strain of Embedded truss 
elements 
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Coordinate system 

The ECS x axis direction of an embedded truss element is the direction from node 1 to node 2. Finite element 

formulation is done with reference to the ECS. 

 

DOF 

Embedded truss elements have a displacement DOF in the ECS x axis direction. 

 

 i iuu      (3.7.4) 

 

Stress and strain 

Truss elements express the ECS defined axial deformation, as shown in figure 3.7.2. 

 

 xxNN ,  xxε     (3.7.5) 

                                    (Axial force and strain)     

 

Load 

The loads applied to Embedded truss elements are as follows: 

 

Load type Explanation 

Self-weight due to gravity Applied to the material density 

Element temperature load 
Element temperature that causes length 

deformation 

Prestress/Initial equilibrium force 
Initial element axial force and corresponding 

equilibrium force 

 

Element result 

The embedded truss element result articles are as follows. The reference coordinate system is always the ECS. 

 

Result article Explanation 

Stress Axial stress 
Position : element center  

xx  

Strain Axial strain 
Position : element center 

xx  

Force Axial force 
Position : element center 

xxN  

 

Nonlinear analysis 

Geometric nonlinearity can be considered for embedded truss elements and von Mises elastic materials can be 

applied. Also, embedded truss elements can have gaps/hooks with a set initial spacing and compressive/tensile 

Table 3.7.4 Embedded truss - Load 
type 

Table 3.7.5 Result articles of 
Embedded truss elements 
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only and nonlinear elastic material properties with allowable loading, depending on the axial direction. The 

nonlinear analysis result articles are as follows: 

 

Result article Explanation 

Stress 

Equivalent stress 
Position : element center 

Calculated according to plastic model, 
eq  

Plastic status 
Position : element center 

Elastic/Plastic, 0 / 1  

Strain 

Equivalent strain 
Position : element center 

Calculated according to plastic model, 
eq  

Effective plastic strain 
Position : element center 

pe  

 

Beam elements are 1D line elements defined by 2/3 nodes and are often used when long elements, whose 

length is longer than its cross sectional size, experiences bending deformation. When the ratio of length to 

section width or height is larger than 1/5, the effects of shear deformation becomes very large and the use of 

shell or solid elements is recommended. 

 

Coordinate system 

The ECS x axis direction of a beam element is the direction from node 1 to node 2. The ECS y and z axis 

directions are determined by a reference node or reference vector. Figure 3.7.4 displays the determination of 

the x-y plane using a reference node. Here, reference node should not be on the ECS x axis. Figure 3.7.4 

displays the determination of the x-y plane using a reference vector. The reference vector cannot be defined 

parallel to the ECS x axis. Finite element formulation is done with reference to the ECS. 

 

 
 

z
y

xGCS

ECS x
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2

ECS y

Reference node

ECS z

3

Table 3.7.6 Nonlinear result 
articles of Embedded truss 
elements 
 

7.3 
Beam Element 

Figure 3.7.4 Coordinate element 
setting using a reference node for 
a Beam element 
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DOF 

Beam elements have a displacement and rotation DOF in all ECS axis directions. 

 

 
T

i i i iu v wu ,  
T

i xi yi zi  θ    (3.7.6) 

 

Stress and strain 

Beam elements can consider the ECS defined axial deformation, bending, torsion, shear deformation etc., as 

shown in figure 3.7.6. When Euler's theory (which does not consider shear deformation) is applied, the shear 

area factor is input as 0. 

 

 xxNN ,  xxε     (3.7.7) 

            (Axial force and strain)     
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(Bending moment and curvature)     

 

 xMT ,  xφ     (3.7.9) 

(Torsional moment and torsion)     
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(Shear force and shear strain)     
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Figure 3.7.5 Coordinate element 
setting using a reference vector 
for a Beam element 
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Load 

The loads applied to beam elements are as follows: 

 

Load type Explanation 

Self-weight due to gravity Applied to the material density and nonstructural mass 

Beam element load 

Distributed load applied on an arbitrary section between element 

nodes, or 

concentrated load applied to an arbitrary position between element 

nodes 

Beam element temperature load 
Average section temperature that causes axial deformation 

Temperature gradient that causes bending 

Prestress/Initial equilibrium force 
Initial resultant force/moment of an element and corresponding 

equilibrium force/moment 

 

Beam element loads can be applied as a distributed or concentrated load form as shown in figure 3.7.7 and can 

be set in the ECS or GCS direction. When defining a distributed load using the GCS, the effective distributed 

load that considers the angle between GCS and ECS is used, such that the load is applied to the length of the 

line normal to the load direction (figure 3.7.8). 
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Figure 3.7.6 Coordinate system 
and stress/strain of Beam 
elements 

Table 3.7.7 Loads applied on Beam 
elements 
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Element result 

To effectively check the end results as well as internal results of a beam element, each element can be defined 

using multiple output segments. Beam elements results can be checked at each end (A-B) of the output 

segment and the result articles are as follows. The reference coordinate system is always the ECS. 

 

  

1 2

21

P M

1p 2p 2m

1m

w

L

z

xGCS



w

L

cosw 

L

Distributed beam load on original segment Distributed beam load on projected segment

| |

Figure 3.7.7 Example of applied 
Beam element load  

Figure 3.7.8 Beam element load 
adjustment according to load 
direction 
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Result article Explanation 

Stress 

Axial stress 
Position : A-B of each segment  

xx  

Torsional stress 

Position : A-B of each segment  

Calculated from torsional stress coefficient c  

( /Tc J  ) 

Shear stress 

Position : A-B of each segment  

Calculated from shear modulus of the section where 

max/min shear stress occur 

xy y yQ G  , 
xz z zQ G   

Point stress 

Position : A-B of each segment  

Stress due to bending at user defined position (C,D,E,F) 

xx  

Max/Min stress 
Position : A-B of each segment  

Max/min of axial and point stress sum at positions C~F 

Von-mises stress 
Position : A-B of each segment  

 2 2 23v xx xy xz       

Strain 

Axial strain 
Position : A-B of each segment  

xx  

Torsional strain 
Position : A-B of each segment  

 

Shear strain 
Position : A-B of each segment  

 

Point strain 

Position : A-B of each segment  

Strain due to bending at user defined position (C,D,E,F) 

xx  

Max/Min strain 
Position : A-B of each segment  

Max/min of axial and point strain sum at positions C~F 

Von-mises strain 
Position : A-B of each segment  

Calculated using 3 stress components (
v ) 

Force 

/Moment 

Axial force 
Position : A-B of each segment  

xxN  

Bending moment 
Position : A-B of each segment  

yM , 
zM  

Torque 
Position : A-B of each segment  

xM  

  

Shear force Position : A-B of each segment  

Table 3.7.8 Result articles of Beam 
elements 
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yQ , 
zQ  

 

 
 

Release condition 

The end release condition is used when mutual constraint for motion in a particular direction does not occur, 

such as for pin joints at each end of a member. Because this condition is applied to the ECS, the coordinate 

relationship must be accurately understood and applied when using connection release in the GCS. Also, an 

unconstrained DOF is added to the applied node, resulting in instability of the entire structure. Hence, 

comprehensive examination is needed for structural safety when applying the end release condition. 

 

 
 

  

ECS x

A

B

ECS y

ECS z

xM

xxN

zM

zQ

yM yQ

xM

xxN

zM

zQ

yM
yQ

C

DE

F

ECS z

ECS y

Stress recovery point 
(I-section) 

Rotation DOF 

released

Translation DOF

released

Pin joint

Sliding joint

Figure 3.7.9 Output position and 
direction of Beam elements 

Figure 3.7.10 Example of applied 
end release condition 
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Offset 

Offset can be used on beam elements when the neutral axis is isolated from the nodes, or when the neutral 

axis between connecting elements are not the same. Offset is applied to the set NCS on a beam element node, 

and change in element length is assumed when the offset is set in the axial direction of the element. 

 

 
 

Tapered section 

The change in section of a beam element is defined about the ECS axis. Using this, the property change 

(depending on the sectional change for each axis) is assumed as follows:  

 

y-axis z-axis A  xxI  yyI  
zzI  

constant constant 1 1 1 1 

constant linear 1 1 3 1 

linear constant 1 1 1 3 

linear linear 2 2 4 4 

 

   1 2 1

m

m m m
x

A x A A A
L

  
    

  
, 1,2m    (3.7.11) 

   1 2 1

n

n n n
x

I x I I I
L

  
    

  
, 1,3,4n    (3.7.12) 

 

Linear stiffness considers tapered sections for nonlinear analysis, but sections with geometric stiffness 

substitute an equivalent section for application. 

 

  

Figure 3.7.11 Example of applied 
offset 

Table 3.7.9 Order depending on 
the sectional changes in a tapered 
section of a Beam element 
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1 2

1 1 2 2

, 1
2

, 2
3

eff

A A
m

A
A A A A

m





 

 


   (3.7.13) 

3 34 4
1 1 2 1 2 1 2 2

5

I I I I I I I I
I

   
    (3.7.14) 

 

Nonlinear analysis  

Beam elements can only consider geometric nonlinearity, and nonlinear or non-elastic materials cannot be 

used. Hence, there are no additional result articles when performing nonlinear analysis. 

 

The input shape, coordinate system, DOF and result of embedded beam elements are identical to that of 

beam elements. The end release condition and offset can be applied in embedded beam elements. Nonlinear 

material model cannot be used for embedded beam elements, but these elements can be used in geometric 

nonlinear analysis. (For more details, please refer to the 7.3 Beam Element.) 

 

When using beam elements with different elements, the nodes must be shared. However, embedded beam 

elements do not require node sharing and are hence more convenient for modeling similar to the embedded 

truss elements. Embedded beam elements are used in an embedded form inside a mother element as shown 

in Figure 3.7.2, and the mother element can be a plane strain element or a solid element. The mother element 

is determined as the element that includes each embedded beam element node within itself, and the multi-

point constraint is used to automatically constrain the nodal displacement of the embedded beam element to 

be the same as the internal displacement of the mother element. (For more details about multi-point 

constraint, please refer to the 8.9 Rigid Link/Interpolation Element.) 

 

Plane stress elements are triangular or rectangular elements consisting of 3/4/6/8 nodes in space. It is mainly 

used to model sheets with uniform thickness and has 2D stress states. 

 

Coordinate system 

The ECS of a triangular plane stress element has the z axis in the normal direction to the element plane and 

the x axis in the direction from node 1 to node 2. For rectangular plane stress elements, the z axis is in the 

direction normal to the element plane and the x axis in the direction that bisects the intersection angle 

between diagonal lines made by nodes 1 and 3, and nodes 4 and 2. The finite element formulation of a plane 

stress element is done about the ECS. 

 

  

7.4 
Embedded beam 

Element 

7.5 
Plane stress Element 
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FEA NX uses 2 methods to decide the material direction of a plane stress element. The methods are the same 

for plane strain elements. 

 

DOF 

Plane stress elements have a displacement DOF in the ECS x and y axis direction. 

 

 
T

i i iu vu     (3.7.15) 

 

Stress and strain 

Because the basic assumption of plane stress elements is the 2D stress state, the in-plane direction resultant 

force and strain defined on the ECS can be considered. 

 

xx

yy

xy

N

N

N

 
 

  
 
 

N , 
xx
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xy







 
 

  
 
 

ε    (3.7.16) 

         (In-plane direction resultant force and strain)    
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Figure 3.7.12 Coordinate system 
of Plane stress elements 

Figure 3.7.13 Stress/strain of Plane 
stress elements 
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Load 

The loads applied to plane stress elements are as follows: 

 

Load type Explanation 

Self-weight due to gravity Applied to the material density 

Pressure load Distributed load applied on on an element plane 

Water pressure load 
Distributed load applied on an element plane 

Size determined by pore pressure/water level 

Element temperature load 
Element temperature that causes in-plane 

deformation 

Prestress/Initial equilibrium force 
Initial stress of an element and corresponding 

equilibrium force 

 

Plane stress elements do not have stiffness in the lateral direction, but this lateral component is considered for 

loads applied on the element and the mass. 

 

Element result 

On FEA NX, the results of a plane stress element are printed in the user defined reference coordinate system. 
The selectable element result coordinate systems (ERCS) are the ECS, MCS and arbitrary coordinate system. 
 

Result article Explanation 

Stress 

In-plane stress 
Position : vertex/element center  

xx , 
yy , 

xy  

Principal stress 
Position : vertex/element center 

1P , 
2P , Principal stress direction 

Von-Mises stress 
Position : vertex/element center  

v  

ECS y

ECS x ,xx xxN 

,xy xyN 

,xy xyN 

,xy xyN 

,xy xyN 

,xx xxN 

,yy yyN 

,yy yyN 

Table 3.7.10 Loads applied on 
Plane stress elements 

Table 3.7.11 Result articles of 
Plane stress elements 
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Max shear stress 
Position : vertex/element center  

max  

Strain 

In-Plane strain 
Position : vertex/element center  

xx , 
yy , 

zz , 
xy  

Principal strain 
Position : vertex/element center 

1E , 
2E , Principal strain direction 

Von-Mises strain 
Position : vertex/element center 

v  

Max shear strain 
Position : vertex/element center 

max  

   

Force/ 

Moment 
In-plane force 

Position : vertex 

xxN , 
yyN , 

xyN  

 

Element thickness 

On FEA NX, the thickness of Plane stress elements can be set as shown in figure 3.7.14. Keep in mind that the 

thickness of high order elements (6/8 nodes) can only be defined at vertices.  

 

 
 

Element method selection 

The usable plane stress elements on FEA NX depend on the various element performance improvement 

methods. Each finite element method and integration method is equal to that of plane strain elements. 
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Figure 3.7.14 Thickness 
specification of Plane stress 
elements 
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Nonlinear analysis 

Geometric nonlinearity can be considered for plane stress elements and von Mises elastic materials can be 

applied. The nonlinear analysis result articles are identical to that of plane strain elements. 

 

Shell elements are triangular or rectangular elements consisting of 3/4/6/8 nodes on a curve surface. It is 

mainly used on thin structures that experience bending deformation and 2D stress states. Bending and shear 

deformation can be considered.  

 

Coordinate system 

Shell elements exist on curved surfaces and the nodes may not exist on the same plane. This needs to be 

considered when defining the ECS. The ECS of a triangular plane stress element has the x axis in the direction 

from node 1 to node 2, and the z axis direction is the outer product between this vector and the vector from 

node 1 to node 3. For rectangular shell elements, the x axis is in the direction that bisects the intersection angle 

between diagonal lines made by nodes 1 and 3, and the z axis direction is the outer product direction of the 

two vectors. The finite element formulation of a shell element is done about the ECS. 

 

 
 

The method for defining the MCS is the same as for plane stress elements: using the angle from the line 

connecting nodes 1 and 2 or using an arbitrary coordinate system. 

 

Curved surface modeling 

When using a shell element on FEA NX, the deformation is expressed using the motion of a 'director', the 

inherent normal vector that is assumed to exist at each node
21

. Because the rotational DOF direction at an 

element node is defined with reference to the director, moment in the director direction does not exist as an 

internal force of the element. This vector can be normal to the element plane, but it is not so for curved 

surfaces modeled as a shell element.  

 

                                                                                              
21 Simo, J.C. and Fox, D.D., “On a stress resultant geometrically exact shell model. Part I : Formulation and optimal parametrization, ” Computer 

Methods in Applied Mechanics and Engineering, Vol. 72, 1989 
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7.6 
Shell Element 

Figure 3.7.15 Coordinate system 
of shell elements 
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For example, if a small corrugation angle exists between adjacent elements as shown in figure 3.7.16, the 

vector normal to the curved surface can be calculated as follows: 

 

i

i





n
t

n
    (3.7.17) 

t  : curved surface normal vector 

in
 

:  vector normal to element plane 

 

Here, if the angle  between t and 
in  is above the tolerance, it is considered as a bent structure rather than a 

segment of a curved surface. Hence, the curved surface normal vector is not defined. A normal vector at a 

node where the curved surface normal vector is not defined is classified as a director. 

Accurately expressing the geometric shape by creating curved surface normal vectors contributes greatly to 

the accuracy of the results, but precautions need to be made when modeling half or 1/4 of a cylindrical shape 

using symmetric conditions. The side where the symmetric condition is applied does not have Shell 2 in figure 

3.7.16 and thus a geometrically correct curved surface normal vector cannot be obtained. In this case, it is 

better not to generate a curved surface normal vector. 

 

DOF 

Shell elements have a displacement DOF in the ECS x, y, z axis directions. 

 

 
T

i i i iu v wu     (3.7.18) 

 

The rotational DOF is defined by the two directions normal to the director. 

 

 i xi yi θ     (3.7.19) 

 

The director is the curved surface normal vector or element normal vector, as explained above.  

Shell 1 Shell 2

1n
2n

t

Element normal Element normal

Surface normal

21

Figure 3.7.16 Angle between shell 
elements used to model a curved 
surface 
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Stress and strain 

Truss elements consider the ECS defined 2D stress state and bending, shear deformation, as shown in figure 

3.7.17. FEA NX always considers shear deformation for shell elements. 
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(In-plane resultant force and strain)    
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(Bending moment and curvature)    
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(Shear strength and shear strain)    

 

 
 

Load 

The loads applied to shell elements are as follows: 

 

Load type Explanation 

Self-weight due to gravity Applied to the material density 

Pressure load Distributed load applied on an element plane or  

ECS y

ECS x ,xx xxN 

,xy xyN 

,xy xyN 

,xy xyN 

,xy xyN 

,xx xxN 

,yy yyN 

,yy yyN 

,xx xxM 

,xx xxM 

,yy yyM 

,yy yyM 

,xy xyM 

,xy xyM 

,xy xyM 

,xy xyM 

,zx zxQ 

,zx zxQ 

,yz yzQ 

,yz yzQ 

Figure 3.7.17 Stress/strain of shell 
elements 

Table 3.7.12 Loads applied on shell 
elements 
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distributed load applied on an element side 

Water pressure load 
Distributed load applied on an element plane 

Size determined by pore pressure/water level 

Element temperature load 
Element temperature that causes in-plane direction deformation 

Temperature gradient that causes bending deformation  

Prestress/Initial equilibrium force 
Initial resultant force/moment of an element and corresponding 

equilibrium force/moment 

 

Element result 

The shell element results on FEA NX are provided at 2 points (top/bottom) or 3 points (top/middle/bottom) in 

the element thickness direction. When a shell element is used, the result articles are as follows and the 

reference coordinate system can be specified by the user. The selectable coordinate systems are the ECS, MCS 

and arbitrary coordinate system.  

 

Result article Explanation 

Stress 

In-plane stress 

Position : top/(middle)/bottom, vertex/element 

center 

xx , 
yy , 

xy  

Normal stress 

Position : top/(middle)/bottom, vertex/element 

center 

zz  

Principal stress 

Position : top/(middle)/bottom, vertex/element 

center 

1P , 
2P , Principal stress direction 

Von-Mises stress 

Position : top/(middle)/bottom, vertex/element 

center 

v  

Max shear stress 

Position : top/(middle)/bottom, vertex/element 

center 

max  

Fiber distance 

Position : top/(middle)/bottom, vertex/element 

center 

Stress calculation position in thickness direction 

Maximum values 

Position : Maximum value among vertex/element 

center and top/bottom, 

(
1P , 

2P , 
v , 

max ) 

Strain In-plane strain 

Position : top/(middle)/bottom, vertex/element 

center 

xx , 
yy , 

xy  

Table 3.7.13 Result articles of shell 
elements 
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Normal strain 

Position : top/(middle)/bottom, vertex/element 

center 

zz  

Principal strain 

Position : top/(middle)/bottom, vertex/element 

center 

1E , 
2E , Principal strain direction 

Von-Mises strain 

Position : top/(middle)/bottom, vertex/element 

center 

v  

Max shear strain 

Position : top/(middle)/bottom, vertex/element 

center 

max  

  

Maximum values 

Position : Maximum value among vertex/element 

center and top/bottom, 

(
1E , 

2E , 
v , 

max ) 

Force/ 

Moment 

In-plane force 
Position : vertex/element center 

xxN , 
yyN , 

xyN  

Bending moment 
Position : vertex/element center 

xxM , 
yyM , 

xyM  

Shear force 
Position : vertex/element center 

zxQ , 
zyQ  
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ERCS x
xxN

xyN

xyN

xyN

xyN

xxN

yyN

yyN

xxM

xxM

yyM

yyM

xyM

xyM

,xy xyM 

xyM

zxQ

zxQ

yzQ
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Figure 3.7.18 Result output 
direction of shell elements 
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Element thickness and material 

The thickness of a shell element can be defined at the vertices in the same way as plane stress elements. The 

material and effective thickness for bending and shear deformation can also be assigned individually. For 

example, assuming the thickness for in-plane direction behavior (membrane thickness) to be t , the following 

values can be set:  

 

► 312 /I t  : Bending stiffness ratio, calculated using the actual bending stiffness I and t   

► /st t    : Ratio between actual shear deformation
st and t  

 

The effective thickness above is only used to calculate the stiffness and internal forces and is not used to 

calculate the mass matrix. Also, when gravity, rotational inertial force or any other mass effects are considered, 

the membrane material is used. 

 

Offset 

Offset can be used on shell elements when the neutral axis is isolated from the nodes, or when the neutral axis 

between connecting elements are not the same. The offset of shell elements can have a constant value within 

the element in the director direction. 

 

Release condition 

The end release condition is used when mutual constraint for motion in a particular direction does not occur, 
such as for pin joints. Unlike beam elements, the NCS is applied to the end release conditions of a shell 
element. When entering the connection release about the GCS, the coordinate relationship needs to be 
accurately understood. Also, an unconstrained DOF is added to the applied node, resulting in instability of the 
entire structure. Hence, comprehensive examination is needed for structural safety when applying the end 
release condition. 
 
Element method selection  

The usable shell elements of FEA NX depend on the various element performance improvement methods. 

Particularly for shell elements, many different methods are applied depending on the direction of element 

deformation (such as in-plane direction or lateral direction). The following table lists the name, related finite 

element method and integration method. The standard value is shaded. 

 

Shape 

Number 

of 

nodes 

Node 

DOF 
Name 

Element method 

(In-plane/lateral) 

Numerical 

integration 

of stiffness 

matrix 

Calculation 

method for 

concentrated 

mass 

Triangle 3 5 Full integration 

Assumed 

displacement 

/ANS 

1 Point Lobatto 

Table 3.7.14 Performance 
improvement methods used on 
shell elements 
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Hybrid 

Mixed method  

/ANS+ Mixed 

method 

3 Points Lobatto 

Rectangle 4 5 

Full integration 

Assumed 

displacement 

/ANS 

2X2 Points Lobatto 

Reduced 

integration 

(stabilized) 

Reduced 

Integration /ANS 

(stabilized) 

1x1 Point Lobatto 

Hybrid 

Mixed method  

/ANS+ Mixed 

method 

2X2 Points Lobatto 

Triangle 6 5  

Assumed 

displacement 

/ANS 

3 Points 
Diagonal 

term scaling 

      
 

 

Rectangle 8 5 

Full integration 

Assumed 

displacement 

/ANS 

3X3 Points 
Diagonal 

term scaling 

Reduced 

integration 

Reduced 

Integration 
2X2 Points 

Diagonal 

term scaling 

Hybrid 

Mixed method  

/ANS+ Mixed 

method 

3X3 Points 
Diagonal 

term scaling 

 

The characteristics and precautions for each element method are as follows:  

 

►6 node element: The lateral displacement is generally large compared to other elements. The element 

performance can be greatly diminished when the node on an element side is not at its center. 

►8 node element: The results are generally accurate for all methods. Elements using reduced integration show 

similar performance to elements using the mixed method and show high calculation efficiency. However, the 

spurious zero energy mode can appear. 

 

Nonlinear analysis 

Geometric nonlinearity can be considered for shell elements and von Mises elastic materials can be applied. 

When an elastic material is applied, different material behavior is shown depending on the position in the 

thickness direction. In this case, the numerical calculation of in-plane direction resultant force and bending 

moment or the stiffness is needed, and FEA NX uses the Simpson integration method. Particularly, when 
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applying the elastic constitutive equation that calculates stress from strain, the planar stress state excluding 

shear deformation is fundamentally assumed. The nonlinear analysis result articles are as follows: 

 

Result article Explanation 

Stress 

Equivalent stress 
Position : top/bottom, integral point 

Calculated according to plastic model, 
eq  

Plastic status 
Position : top/bottom, integral point 

Elastic/Plastic, 0 / 1  

Strain 

Equivalent strain 
Position : top/bottom, integral point 

Calculated according to plastic model, 
eq  

Effective plastic strain 
Position : top/bottom, integral point 

pe  

 

  

Table 3.7.15 Nonlinear analysis 
result articles of shell elements 
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Layered shell elements are used to effectively analyze thin structures of laminated layers comprising different 

materials or different principal axes in the thickness direction such as composite materials and sandwiches.  

The basic coordinate system, curved surface model and the degrees of freedom are identical to those of the 

general shell elements.  A layered shell element is a triangular or a quadrilateral element consisted of 3, 4, 6 or 

8 nodes. That is, a layered shell element, which is based on the primary shear deformation theory, has the 

identical finite element formulation as the shell element. 

 

Shear Stiffness Calculation & Shear Stress Restoration in the Transverse Direction 

Unlike an isotropic material, the stiffness calculation in the transverse direction, which is based on the shear 

correction factor, cannot be generalized for a laminated composite material.  Therefore, it is desirable to 

calculate the shear stiffness in the transverse direction using a number of assumed deformation shapes and 

stress equilibrium equations.
22

 The use of the series of the above procedures also renders an advantage of the 

possibility of restoring shear stress in the transverse direction. 

The in-plane stresses based on the primary shear deformation theory and the transverse shear stresses based 

on the 3-dimensional stress equilibrium equations are expressed as follows: 
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If the effects of the in-plane forces are ignored in the constitutive equation of a layered shell ( 0N ), the 

strain and curvature at the neutral plane are expressed as follows: 
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where, * 1T  D D B A B .  Using Equation (3.7.25), the transverse shear stresses can be expressed again as 

follows: 
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7.7  
Layered Shell 
Element 
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When cylindrical bending behaviors about the x-and y-axes are assumed, the in-plane differential values and 

the transverse shear forces can be expressed in a simple relationship. 
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Using the above, the transverse shear stresses are expressed as, 
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That is, the transverse shear stresses are determined by the transverse shear forces and the shape function, 

( )zF , which is based on the properties, thicknesses and the lamination angles of the materials constituting 

the laminated plate.  Using this, the transverse shear stiffness, G , which is calculated by integration based on 

the lamination theory, can be expressed as follows: 
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Element Results 

The layered shell elements in FEA NX generate results at the center or top and bottom of each ply in the 

thickness direction.  Also, the results include the maximum and minimum values of the entire laminated plate.  

Stress and strain results are produced in the principal axis directions of the material in each ply. 

 

Result Items Descriptions 

Stress 

In-plane stress 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  

11 22 12, ,    

Transverse shear stress 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  

Table 3.7.16 Result Items of a 
layered shell element 
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1 2,z z   

Principal stress 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  

1 2,P P  

Von-mises stress 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  

v  

Max Shear Stress 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  

max  

Strain 

In-plane strain 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  

11 22 12, ,    

Principal strain 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  

1 2,E E Principal strain directions  

Von-Mises strain 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  

v  

Max Shear Strain 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  

max  

Force/ 

Moment 

In-plane force 
Location: Vertices/element center  

, ,xx yy xyN N N  

Bending moment 
Location: Vertices/element center  

, ,xx yy xyM M M  

Shear force 
Location: Vertices/element center  

,xz yzQ Q  

Misc Failure index/strength ratio 

Location: Center/top-bottom of each ply, 
maximum/minimum of laminated plate, 

vertices/element center  
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Tsai-Wu, Tsai-Hill, Hoffman, max-strain, max-stress 
or LaRC02  

 

 

Nonlinear Analysis 

When using elasto-plastic materials, the number of Simpson integration points can be definedat each ply.  The 

result items from nonlinear analysis are as follows:  

 

Result Items Descriptions 

Stress 

Equivalent stress 

Location: Center/top-bottom of each ply, 
maximum/minimum integration points of laminated 

plate  

Calculated on the basis of plastic models, eq  

Plastic status 

Location: Center/top-bottom of each ply, 
maximum/minimum 

integration points of laminated plate 
Elasticity/plasticity, 0 /1 

Strain 

Equivalent strain 

Location: Center/top-bottom of each ply, 
maximum/minimum integration points of laminated 

plate  

Calculated on the basis of plastic models, eq  

Effective plastic strain 

Location: Center/top-bottom of each ply, 
maximum/minimum 

integration points of laminated plate pe  

 

 

 

Table 3.7.16 Result items of a 
layered shell element in 
nonlinear analysis 
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Special Purpose Elements 

Interface elements account for normal and shear directional relative displacement and interface traction that 

simulate face/face and line/line behavior. FEA NX divides Interface elements into line Interface elements and 

plane Interface elements. Line Interface elements are often used to simulate behavior between planar 

elements (Plane stress, Plane strain) or between planar elements and Truss/Beam elements. Plane Interface 

elements are often used to simulate behavior between solid elements or between planar elements and solid 

elements.  

 

Coordinate system 

 

In FEA NX, the element coordinate system and node order of line and plane Interface elements are as shown 

figures 3.8.1 and 3.8.2.  

Line Interface elements can use 4 node and 6 node elements. 

 

 
 

Plane Interface elements can use triangular shapes (6 nodes, 12 nodes) or rectangular shapes (8 nodes, 16 

nodes). 
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Section 8 

8.1  
Interface Element 

Figure 3.8.1 Line Interface 
elements 
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DOF 

Interface elements have 3 displacement DOF in the 3 axes of the ECS. Finite element formulation is done with 

reference to the ECS. 
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u    (3.8.1) 

xt /
xu  : Normal interface traction / Normal relative displacement 

yt , 
zt /

yu , 
zu  : Tangential interface traction / Tangential relative displacement 

 

The relationship between relative displacement u  and interface traction t can be defined using the 

following equation: 

 

 t D u     (3.8.2) 
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Figure 3.8.2 Plane Interface 
elements 

Figure 3.8.3 DOf of Interface 
elements 
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D  : interface linear constitutive equation 

 

Here, the displacement of the top/bottom faces is interpolated using the shape function. 

 

The D from equation (3.8.3) is the linear elastic constitutive equation. Here, it can be verified that the relative 

displacement and interface traction do not have a correlation in each direction. Detailed information is 

introduced in Chapter 4: Material Models. 

 

Numerical integration uses the Newton-Cotes integration method, and the number of integral points 

depending on the element shape is as follows. When the Gaussian integral is used for Interface elements, the 

position of integral points exists within the element and nodal behavior of the interface cannot be accurately 

simulated. 

 

Interface element Number of integral points 

Line interface 
4 Nodes 2 

6 Nodes 4 

Triangle plane interface 
6 Nodes 3 

12 Nodes 6 

Quadrilateral plane interface 
8 Nodes 4 

16 Nodes 16 

 

Element result 

The Interface element results are output with reference to a user specified coordinate system. The selectable 

coordinate systems are ECS and GCS. 

 

Interface element Result article 

Stress 

Stress components 
Position : element node/center point 

xx , 
yy , 

zz  

Pore stress 

(Total and excessive) 

Position : element node/center point 

,totalp , 
,excessivep  

Strain 
Position : element node/center point 

xu , 
yu , 

yu  

 

Nonlinear analysis 

Geometric nonlinearity can be considered for Interface elements and Coulomb friction materials can be 

applied. The nonlinear analysis result articles are as follows: 

Table 3.8.1 Number of integral 
points of Interface elements 

Table 3.8.2 Result articles of 
Interface elements 
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Result article Explanation 

Strain 
Position : element node/center point 

p

xu , 
p

yu , p

zu  

 

Shell interface elements are used to simulate the behavior between shell elements. Shell interface elements 

can be used to express the nonlinearity at joints between lining segments in a tunnel, as shown below. Shell 

interface elements are especially needed for TBM tunnels which are constructed through segmented lining 

because while the other segment elements display rigid behavior, the rotational and sliding behavior is 

dominant at the joints. The basic concept is similar to that of line Interface elements. An axial rotation DOF is 

added. 

 

shield tunnel

joint

segment

 
 

On FEA NX, the 4 node and 6 node shell interface elements can be selected. both elements can only be used in 

3D analysis. The ECS and node order are shown in figure 3.8.5. 
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Table 3.4.3 Nonlinear analysis 
result articles of Interface 
elements 

8.2 
Shell interface 

Element 

Figure 3.8.4 Segmented lining 

Figure3.8.5 Coordinate system 
and DOF of Shell interface 
elements 
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Coordinate system 

The ECS y axis of a shell interface element is the direction from node 1 to node 2, and the z axis is determined 

by the average normal direction of adjacent shell elements. The x axis is the tangential direction of the contact 

plane. 

 

DOF 

Shell interface elements have a y axis direction rotational DOF and 3 displacement DOF in the ECS axis 

directions.  

The relative displacement, interface traction and ECS of a shell interface element are shown in equation 3.8.4 

and figure 3.8.6. Finite element formulation is done with reference to the ECS. 
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u    (3.8.4) 

xt /
xu  : Normal interface traction / Normal relative displacement 

yt , 
zt /

yu , 
zu  : Tangential interface traction / Tangential relative displacement 

ym , 
y  : Axial moment / Rotation angle 
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Here, the displacement of the top/bottom faces is interpolated using the shape function. The constitutive 

equation for finding the interface traction of a shell interface element is introduced in Chapter 4: Material 

Models. 

 

Like interface models, the Newton-Cotes integration method is used and the number of integral points 

according to the element shape is as follows: 

 

Shell interface element Number of integral points 

Line shell interface 
4 Nodes 3 

6 Nodes 4 

 

Figure 3.8.6 Relative displacement 
and interface traction of Shell 
interface elements 

Table 3.8.4 Number of integral 
points of Shell interface elements 
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Element result 

The shell interface element results are output with reference to a user specified coordinate system. The 

selectable coordinate systems are ECS and GCS.  

 

Shell interface element Result article 

Force 
Position : element node/center point 

xt , 
yt , 

zt , 
ym  

Strain 
Position : element node/center point 

xu ,
yu ,

yu ,
y  

Nonlinear analysis 

Geometric nonlinearity can be considered for Shell interface elements, and Coulomb friction and Janssen 

materials can be applied. The nonlinear analysis result articles are as follows: 

 

Shell interface element Result article 

Strain 
Position : element node/center point 

p

xu , 
p

yu , p

zu , 
p

y  

 

Pile elements are the linear Interface elements between the buried beam elements and the ground, as shown 

in figure 3.8.7. To simulate piles in the ground without pile elements, a beam element needs to be modeled by 

node sharing with the ground element, and a line Interface element is used to separate the beam element 

nodes and ground element nodes. FEA NX overcomes this tedious modeling process by inserting a pile 

element between the virtual beam element nodes and ground element. This is done when a beam element is 

buried within the ground element in order to simulate the behavior between ground and beam elements. 

However, in FEA NX, pile elements can be applied to solid and plane strain elements as shown in figure 3.8.7, 

and only 4 node pile elements can be used. 

 

 
 

1

Mother 

element

2

Beam

ECS of Pile element

Y

Z

X

Table 3.8.5 Result articles of Shell 
interface elements 

Table 3.8.6 Nonlinear analysis 
result articles of Shell interface 
elements 

8.3 
Pile/Pile Tip Elements 

Figure 3.8.7 Pile element and ECS 
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Pile tip elements can be generated in FEA NX at the end of pile elements that are buried in a solid element, as 

shown in figure 3.8.7. This pile tip element acts as a solid-point interface. This is the same as adding spring 

stiffness in the element axial direction between the pile element and the pile tip node.  

 

 
 

Coordinate system 

The ECS x axis direction of a pile element is the direction from node 1 to node 2, and the ECS x direction of a 

pile tip element is the same as the x axis direction of the pile element. Finite element formulation for both 

elements is done with reference to the ECS. 

 

DOF, relative displacement and force  

Pile elements have 3 DOF, like interface elements. 

 

x

y

z

t

t

t

 
 

  
 
 

t , 

top bot

x xx

top bot

y y y

top bot
z z z

u uu

u u u

u u u

  
  

       
   
    

u    (3.8.5) 

 

On the other hand, pile tip elements have 1 DOF in the axial direction. 

 

 xtt ,    top bot

x x xu u u    u    (3.8.6) 

 

Element result 

The pile element results are output with reference to the ECS and GCS. The pile tip element results are output 

with reference to the ECS.  

 

Pile element Result article 

Force 
Position : element node/center point 

xt , 
yt , 

zt  

Strain 
Position : element node/center point 

xu , 
yu , 

yu  

 

1 2Beam
ECS

Pile elementPile tip

Y

Z

X

Figure 3.8.8 ECS and block 
diagram of a Pile tip element 

Table 3.8.7 Result articles of Pile 
elements 



 

 

86 | Section 8. Special Purpose Elements 
 
 
 

Chapter 3. Elements 
 

ANALYSIS REFERENCE 

Pile tip element Result article 

Force 
Position : element node 

xt  

Strain 
Position : element node 

xu  

 

Nonlinear analysis 

A Pile element can simulate a perfectly plastic model in the axial direction (ECS x axis) and only linear behavior 

is possible in the normal (ECS y,z axis) direction. Pile tip elements can be a perfectly plastic model in the axial 

direction (ECS x axis). Both elements do not have an additional result article.  

 

Geogrid elements are thin elements that do not have flexural rigidity, but have axial stiffness. Also, geogrid 

elements are textile products used for reinforcement and segregation in construction work, and only have 

stiffness during tension. 

 

Element 

Geogrid elements can be classified into geogrid 1D elements with 2 nodes or triangular/rectangular geogrid 2D 

elements with 3/4/6/8 nodes. The behavior of geogrid 1D elements is the same as that of truss elements. The 

behavior of geogrid 2D elements is the same as that of plane stress elements. 

 

Coordinate system/DOF 

The ECS and DOF of geogrid 1D/2D elements are defined in the exact same way as that of truss and plane 

stress elements. 

 

Load 

The loads applied on truss and plane stress elements can be equally applied on geogrid 1D and 2D elements 

respectively. However, generally only the very small self weight, such as the simulation of target element 

geogrids, exists. Additional load is not applied during construction to prevent geogrid damage. 

 

Element result 

The element results of geogrid 1D/2D elements are the same as that of truss and plane stress elements 

respectively. 

 

Nonlinear analysis 

Material nonlinearity where the stiffness only exists for tension needs to be considered for geogrid elements. 

Even when a linear elastic material is selected, the Inverse Rankine material is used internally and material 

nonlinear analysis is necessary. Hence, a nonlinear result (equivalent stress, plastic status, equivalent strain, 

effective plastic strain) is output. 

 

Table 3.8.8 Result articles of Pile 
tip elements 

8.4 
Geogrid Element 



 

 

Section 8. Special Purpose Elements | 87 
 
 
 

ANALYSIS REFERENCE Chapter 3. Elements 

Element texture 

The texture of geogrid elements do not need additional specification; selecting an elastic texture analyzes it as 

an Inverse Rankine material with an allowable compressive strength of 0(zero). Here, if it is a 1D element, it is 

the same as tension only behavior.  

 

tension compression





 

 

1

2

3
 

 

Element thickness and area 

Geogrid 1D elements use the same method as truss elements to input the area. Geogrid 2D elements use same 

method as plane stress elements to input the thickness. 

 

Figure 3.8.9 Tension only behavior 
of Geogrid 1D elements 

Figure 3.8.10 Inverse Rankine of 
Geogrid 2D elements 
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Gauging shell elements are triangular or rectangular elements consisting of 3/4/6/8 nodes on a plane. Gauging 

shell elements are special elements that are used to measure the force or moment at the neutral axis of a thin 

plate modeled as a solid element, as shown in figure 3.8.11. This is similar to a shell element, with the same 

thickness as the target solid element, positioned at the neutral axis of the target solid element. However, 

unlike general shell elements, it does not have a mass and has a very small stiffness. Hence, gauging shell 

elements only provide the element results, such as force and moment etc., and have almost no effect on the 

behavior of the entire analysis model.  

 

 
 

Coordinate system/DOF 

The ECS and DOF of gauging shell elements are defined in the exact same way as that of shell elements. 

 

Load 

Loading can be applied to gauging shell elements but because they are elements that measure the results of 

the target element, the load should not be directly applied such that it does not affect the entire structural 

model. However, thermal expansion is considered to correctly calculate the stress and strain. Also, there are 

no mass effects such as self weight because the mass density is not used. 

 

Element result 

The gauging shell element results are output with reference to a user specified coordinate system. The 

selectable coordinate systems are ECS, MCS and arbitrary coordinate system. 

 

Result article Explanation 

Force/ 

Moment 

In-plane force 
Position : vertex/element center 

xxN , 
yyN , 

xyN  

Bending moment 
Position : vertex/element center 

xxM , 
yyM , 

xyM  

Shear force 
Position : vertex/element center 

xzQ , 
yzQ  

 

Gauging shell

elements

Solid

elements

8.5 
Gauging Shell 

Element 

Figure 3.8.11 Solid elements and 
Gauging shell elements 

Table  3.8.9 Result articles of 
Gauging shell elements 
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Nonlinear analysis 

Geometric nonlinearity can be considered for gauging shell elements, but only linear elastic materials can be 

applied. Hence, there are no additional result articles for nonlinear analysis. 

 

Element texture 

The same texture as the target solid element is applied, but the mass density is not used. For modulus of 

elasticity, the input stiffness control coefficient is multiplied so as not to affect the total deformation result for 

accurate measurement. The modulus of elasticity is only used for printing results. 

 

Element thickness and offset 

Because the gauging shell element is generated on the surface of the target solid element, an offset of half the 

thickness around the target element is automatically considered for result measurement at the neutral axis. 

Like the shell element offset, a constant value is used for each element in the director direction, but the 

thickness is considered differently for each node to fit the target solid element. 

 

 
 

Precaution – rotational DOF, thick target element 

Because the target solid element does not have a rotational DOF, if a separate element with a rotational DOF 

is not adjoined, the rotation amount of the gauging shell element is the result of rigid rotation about the 

displacement DOF. Hence for result measurement, the rotational DOF needs to be fixed when the end 

rotation is not fixed. If this is not possible, the gauging shell element needs to be attached slightly longer than 

the actual end measurement position such that the amount of rotation is appropriately measured. 

 

Because gauging shell elements use the out-plane direction offset of shell elements to output results, the error 

becomes larger because the amount of rotation at the top and bottom parts of an element differ for thick 

elements. In this case, adding gauging shell elements to the top and bottom and using the average value is 

recommended. 

 

Figure 3.8.12 Thickness and offset 
of Gauging shell elements 
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Point spring/damper elements are used to prevent singular errors that can occur when elements with 

insufficient DOF (truss, plane stress elements etc.) are connected together, or when considering the elastic 

stiffness of adjacent structures or ground boundary conditions etc. at the model boundary. It can also be used 

to model the cohesive boundary conditions of the ground using the damping coefficient input. Nodal damping 

is not applied to general static analysis and it is only applied in dynamic analysis due to its properties. 

 

Coordinate system 

Point spring/damper elements do not specify a separate coordinate system and references the GCS. 

 

DOF 

Point spring/damper elements have a displacement and rotational DOF in all axial directions. 

 

 
T

i i i iu v wu ,  
T

i xi yi zi  θ    (3.8.7) 

 

Element force 

Point spring/damper elements can consider force and moment in all axial directions. 
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(Axial direction force and moment)    

 

Load 

Because point spring/damper elements only have a simple stiffness and no material properties, no loads 

except the concentrated load and moment can be applied. 

 

Element result 

On FEA NX, the Point spring/damper element result articles are output as a value about the GCS. 

 

Result article Explanation 

Force/ 

Moment 

Force 
Position : element center 

xxN , 
yyN , 

zzN  

Bending moment 
Position : element center 

xxM , 
yyM , 

zzM  

 

8.6 
Point Spring/Damper 

Element 

Table 3.8.10 Result articles of 
Point spring/damper elements 



 

 

Section 8. Special Purpose Elements | 91 
 
 
 

ANALYSIS REFERENCE Chapter 3. Elements 

Matrix spring elements are used to supplement the point spring element, which only inputs the stiffness in one 

DOF direction without any behavioral correlations with other DOF. When modeling the elastic boundary 

condition in detail, not only the stiffness of each DOF but also the coupled stiffness between DOF needs to be 

considered. Hence, coupled stiffness needs to be used when considering rotational displacement that occurs 

simultaneously with displacement. Matrix spring elements are suitable for modeling these elastic boundary 

conditions. For example, when matrix spring elements are used to model piles used in the foundation of a 

structure, the coupled stiffness can be input as well as the stiffness of each direction for more detailed analysis. 

 

Coordinate system/DOF 

Matrix spring elements reference the GCS and have a displacement and rotational DOF in each axial direction, 

like point spring elements. 

 

Element force 

Force and moment in each axial direction can be considered, just like point spring elements. 

 

Load 

No loads other than the concentrated load and moment can be applied, just like point spring elements. 

 

Element result 

Matrix spring elements output the same result articles in the GCS as point spring elements. 

 

Precaution - positive definite, symmetry 

The user can input an arbitrary value for the stiffness of a matrix spring element, but the entire matrix needs to 

be positive. If not, an appropriate solution cannot be found. Also, FEA NX only allows the input of the upper 

triangular matrix such that the stiffness matrix of the matrix spring element is symmetric. 

 

Elastic link elements connect two nodes by the user input stiffness and do not have any other structural 

property, just like point spring elements or matrix spring elements. Generally, elastic link elements are 

composed of displacement and rotational stiffness in each axial direction. Other than this, the tension-only 

and compression-only properties can be assigned and in this case, only the stiffness in the ECS x direction can 

be input. 

 

Elastic link elements can be appropriately used for elastomeric bearings (elastic links) that connect the top and 

bottom piers of bridge structures and for ground boundary conditions that have compressive-only properties. 

 

Coordinate system/DOF 

The coordinate system and DOF of elastic link elements are defined in the same way as beam elements. 

 

Element force 

Force and moment in each axial direction can be considered, just like point spring elements. 

 

8.7 
Matrix Spring 

Element 

8.8 
Elastic Link Element 
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Load 

No loads other than the concentrated load and moment can be applied, just like point spring elements. 

 

Element result 

The result articles of elastic link elements are the same as that of point spring elements, but the reference 

coordinate system is always the ECS. 

 

 

Rigid link and interpolation elements mutually constrain the relative motion between nodes. Here, the 

principal constraint node is the independent node and the principal constraint DOF is the independent DOF. 

The constrained node is the dependent node and the constrained DOF is the dependent DOF.  

Rigid link elements constrain the geometrically relative behavior of different nodes due to one node. Hence, it 

has a form of one independent node with multiple connected dependent nodes. The coupled relationship 

equation between the independent and dependent nodes is as follows: 

 

( )D I I I I

D I

      



u u r θ u x θ

θ θ
    (3.8.9) 

 

,D D
u θ  : Displacement and rotation of dependent nodes 

,I I
u θ  : Displacement and rotation of independent nodes 

x  : Vector from a dependent node to an independent node ( I Dx x ) 

 

The DOFs that are constrained by the independent nodes can be selected out of the 6 DOF of dependent 

nodes, and this can be used to generate directional selective rigid link elements. The following example shows 

the constrained rigid behavior in the x-y plane: 

 

ΔyD I I

zu u   , ΔxD I I

zv v   , D I

z z     (3.8.10) 

 

8.9 
Rigid 

Link/Interpolation 

Element 

Figure 3.8.13 Example of rigid 
behavior in a plane 
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Interpolation elements display the relative behavior of one node depending on the motion of the other nodes. 

Hence, it has a form of one dependent node with multiple connected independent nodes. Interpolation nodes 

are used when distributing the force or mass to multiple nodes. The binding force is smaller than the rigid link 

element because the number of constrained nodes is smaller. The following example displays the force 

distribution process to show the displacement relationship between the independent and dependent nodes on 

a 2D x-y plane: 

 

 
 

When the dependent nodes are located at a distance e  from the center of mass of independent nodes that are 

distributed with a weighed value
iw , then the force DF  and moment DM acting on the dependent node acts 

with reference to the center of mass as a moment of D DM e F  , as shown in figure 3.8.14. The force and 

moment acting on the center of mass due to the dependent node can be distributed as a weighted average 

force for each independent node, as shown below: 

 

  
def

1ˆ D D D

i i iw     F F T M e F r    (3.8.11) 

 

Here, ˆ
iw  is the weight normalized by the sum of weights, and T  is the average inertia tensor at the center of 

mass of dependent nodes:  
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Figure 3.8.14 Relationship 
between center of mass of an 
independent node and force 
acting on a dependent node 
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ˆ i
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w
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

    (3.8.12) 

 ˆ
i i i i i

i

w    
 T r r I rr    (3.8.13) 

 

This force relationship can be converted to the following displacement and rotation relationship: 

 

 1ˆ ˆD I I

i i i

i i

w w 
    

 
 u u T r u e    (3.8.14) 

 1 ˆD I

i i

i

w  T r u    (3.8.15) 

 

Eventually, the average behavior of independent nodes determines the motion of dependent nodes and 

because of this property, a smaller number of DOF constraints occur.  

 

 
 

In case of seismic analysis, one would generally model some part of ground surrounding main domain since it 

is impossible to model infinite ground as finite element model. In order to get similar results with infinite 

ground, one should create a kind of load which is traction from free field analysis and use absorbent boundary 

condition to remove the reflected wave generated in the model boundary. These two features are 

implemented with free field element in FEA NX
22

. 

A traction generated from free field analysis is internal force and delivered to main domain and the reflected 

wave is removed using absorbent boundary condition. An example including free field element is shown in the 

below: 

 

                                                                                              
22 

Nielsen, A. H., "Towards a Complete Framework for Seismic Analysis in Abaqus", Engineering and Computational Mechanics, Vol  167, EM1, 

2013, pp. 3-12 

Rigid link Interpolation

Figure 3.8.15 Behavioral 
comparison between rigid 
link/Interpolation elements 

8.10 
Free Field Element 

Figure 3.8.16 Model for seismic 
analysis including free field 
element 
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Coordinate system 

The element coordinate system and order of node in 2D column element for 2D analysis are as below. Here, 

shaded area is free field domain and non-shaded area is connection part to main domain. The dotted lines are 

damper connected between free filed and main domain. 

 

 
 

The element coordinate system and order of node in 3D column element and plane element for 3D analysis are 

as below. 

 

Main domain

Free

field

Free

field

Seismic

wave

1 3

42

65

x

y

ECS

Figure 3.8.17 2D column free field 
element 

Figure 3.8.18 3D column free field 
element 
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DOF 

Free field elements have displacement DOF for all directions in the x, y, z axes of the ECS. 

 

 
T

i i i iu v wu     (3.8.16) 

 

Stiffness matrix 

The stiffness matrix of free field elements is consist of a part for applying internal force from stiffness matrix of 

free field domain (
ffK ) and traction by free field behavior (

mfK ) to main domain. 

 

0

0

ff

mf

 
 
 

K

K
    (3.8.17) 

 

The stiffness matrix is a non-symmetric matrix since free field domain is not influenced from the model of 

main domain. In static analysis, it solves equations with assumption that the stiffness matrix is a symmetric 

matrix. In this case, it makes the stiffness matrix to a symmetric matrix to symmetry 
mfK  matrix. 
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Figure 3.8.19 6/8/12/16 nodes free 
field element 
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Damping matrix 

Free field elements can consider Rayleigh damping of material. The matrix by Rayleigh damping and 

absorbent boundary condition is included in damping matrix of free field elements. 

 

Nonlinear analysis 

It can use nonlinear material which can be used for plain strain and solid element, but it isn’t able to consider 

geometry nonlinearity. 

 

Element thickness and width 

Element thickness of 2D model is same with element thickness of plain strain model. Element width is free 

field width. In case of using non-symmetric stiffness matrix, it doesn’t affect to the solution. In case of using 

symmetric stiffness matrix, element width should be increased to minimize that free field analysis is affected 

by the model of main domain such as using penalty factor. In this case, element width should be larger than 

minimum 10
4
 times of model width of main domain. 

 

Absorbent boundary condition 

In order to absorb the shock wave from model boundary, the method proposed by Lysmer and Kuhlemeyer
23
 

is used. This method gives a damping to the boundary with material density and wave velocity. A traction 

added to elements by absorbent boundary condition is as follows. 

 

 

 

 

m ff

n p n n

m ff

s s s s

t C v v

t C v v





  

  
    (3.8.18) 

,  p sC C  : Wave velocity of p, s direction 

mv  : Velocity of model boundary 

ffv  : Velocity of free field domain 

 

When crack or yield occurs due to irregular cyclic load such as seismic load, very complex behavior appears 

since displacement history to the current affects to the restoring force and displacement relationship. It is 

called that hysteresis model which regulates this relationship and is considered to inelastic hinge at inelastic 

element. 

Inelastic beam element is a beam element, which is assigned inelastic hinge properties. The inelastic beam 

element is limited to having a prismatic section whose hinge properties are identical for the single beam 

element. The stiffness of the inelastic beam element is formalized by the flexibility method. The shape 

function on which the existing stiffness method is based may differ from the true deformed shape in inelastic 

analysis. Whereas, the element section force distribution on which the flexibility method is based coincides 

                                                                                              
23 Lysmer, J. and Kuhlemeyer, R. L, "Finite Dynamic model for infinite media", Journal of the Engineering Mechnanics Division, P roc. ASCE, 

Vol. 95, No. EM4, 1969, pp. 859-876 

8.11 
Inelastic Element 
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with the true distribution, which results in much higher accuracy. It has been known that the use of the 

flexibility method allows us to accurately model with a much less number of elements and as a result, the 

analysis speed can be much faster. 

Inelastic beam elements are classified into lumped type and distributed type. 

 

Lumped type inelastic element 

The formulation is represented by inserting inelastic translational and rotational springs of non-dimensional 0 

lengths, which can deform plastically, into the beam element. The remaining parts other than the lumped type 

inelastic hinges are modeled as an elastic beam. The locations for inserting the inelastic springs for axial and 

flexural deformation components are assigned to the middle and both ends of the beam element respectively. 

The lumped type hinge is defined by a force-displacement relationship for the axial component and a 

moment-rotational angle relationship at the ends for the flexural components. The stiffness matrix of the 

beam element, which has been assigned lumped type hinges, is calculated by the inverse matrix of the 

flexibility matrix. The flexibility matrix of the total element is formulated by adding the flexibility matrices of 

the inelastic springs and the elastic beam. 

 

  



 

 

Section 8. Special Purpose Elements | 99 
 
 
 

ANALYSIS REFERENCE Chapter 3. Elements 

 
 

The relationship of moment-rotational angle of a flexural deformation hinge is influenced by the end moments 

as well as by the flexural moment distribution within the member. In order to determine the relationship, the 

distribution of flexural moment needs to be assumed. The initial stiffness based on assumed moment 

distribution is shown below. 
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Moment DistributionDeflection Shape Initial Stiffness

 

Distributed type inelastic element 

The flexibility of a section at an integration point in the longitudinal direction is obtained by state 

determination by the hysteresis models of uni-axial or multi-axial hinges. The distributed type hinge is defined 

by a force-deformation relationship for the axial component and a moment-curvature rate relationship for the 

flexural components at the section. The flexibility matrix of a beam element, which has been assigned 

distributed type inelastic element, is defined by the following equations and calculated through the Gauss-

Lobbatto integration. 
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Figure 3.8.20 Flexibility of lumped 
type inelastic element 

Figure 3.8.21 Initial stiffness 
relative to flexural deformations 
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1

0
( ) ( ) ( )

L
TF b x f x b x dx K       (3.8.19) 

 

 

 

 

 

 

 

 

 

The locations of the integration points are determined by the number of integration points. The distances 

between the integration points are closer as the points near both ends. A maximum of 8 integration points can 

be specified. 

 

Stiffness matrix and Jacobian matrix 

Same function is applied for displacement shape function and geometrical shape function for general element. 

However infinite element uses individual functions for displacement and geometrical shape. Function defines 

infinite area of global coordinate system as finite area of natural coordinate system. It is then used for 

calculation of Jacobian matrix. 

 

      
T

K B C B J dΩ=     (3.8.20) 

 

 

 

 

 

 

Jacobian matrix is defined as relationship of mapping function unlike general finite element. In case of 2D, it is 

defined as follows: 
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=     (3.8.21) 

 

 

 

 

In case of axisymmetric stiffness matrix, additional radius (r) should be considered thus mapping function is 

defined as follows: 

F  :  Element flexibility matrix 

K  :  Element stiffness matrix 

L  :  Length of member 

x  :  Location of section 

( )f x  :  Flexibility matrix of the section at the location x  

( )b x  :  Matrix of the section force distribution function for the location x  

8.12 
Infinite Element 

K  :  Stiffness matrix 

B  :  Deformation matrix 

C  :  Constitutive equations matrix 

J  :  Jacobian matrix 

M  :  Mapping function 

,x y  :  Nodal coordinates 
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i i

node

r M r     (3.8.22) 

 

Coordinate System 

The coordinate system can be expressed as below because selected area (area adjacent to finite element) and 

infinite area should be differentiated when defining infinite element. Polar coordinate is used to create 

imaginary mid-node because mapping function only uses high order element. 
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Degree of Freedom 

Free field element takes degree of freedom for displacement in all x, y and z direction of ECS. 

 

 
T

i i i iu v wu     (3.8.23) 

 

Polar Coordinate 

Figure 3.8.22 2D/3D Infinite 
element coordinate system 
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Generally, polar coordinate of infinite element is set to be located at the center of the model. This is very 

important as results of infinite element change with the polar coordinate. Imaginary mid-node is created at 

the point (a1=b1, a2=b2) and mapping function is considered. 
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Figure 3.8.23 Polar coordinate 
system in 2D infinite element 
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As concrete structures are highly susceptible to tensile stress, they can be offset by applying a certain size of 

compressive stress to offset tensile stress. As such, concrete under compression stress is called prestressed 

concrete and tensile force is applied to high-strength steel through prestressing to act on the concrete. 

 

Tendon elements are used to represent prestressed effects, and basic element actions do not require node-

sharing, such as Embedded Truss, for convenient modeling and interpretation. It is also used as a buried form 

in mother elements and can be buried in plate elements and solid elements. For each of the nodes, such as the 

Embedded Truss element, the element that contains the node inside is determined as the mother element, 

and the element's nodal displacement is automatically constrained through multi-point constraints to match 

the internal displacement of the mother element. The difference from Embedded Truss is that for the Tendon 

element, it is assumed that stiffness is not introduced if the prestress is not applied. 

 

 
 

Coordinate System 

In the ECS of the Tendon element, the direction of the x-axis is from node 1 to node 2. The formulation of 

finite elements is based on the ECS. 

 

Degree of Freedom 

The tendon element has a degree of freedom of the displacement in the x-axis direction of the ECS. 

 

 i iuu               (3.8.24) 

 

Stress and Strain 

The Tendon element represents the axial deformation defined in ECS as shown in Figure 3.8.23. 

 

 xxNN ,  xxε         (3.8.25) 

                      (Axial force and strain) 
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8.13 
Tendon Element 

Figure 3.8.23 Tendon Element 
Coordinate System and Strain 
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Load 

The loads applied to the tendon element are as follows. 

 

Load Types Description 

Self Weight Applied based on material density 

Element Temperature Element temperature causing length deformation 

Prestress 
Initial axial force of element and corresponding 

equilibrium force 

 

 

Element Result 

When a tendon element is used, the element results always follows ECS. 

 

                             Result Item Description 

Stress Axial stress 
Position: Element Center 

xx
 

Strain Axial strain 
Position: Element Center 

xx
 

Force Axial force 
Position: Element Center 

xxN
 

 

  

Table 3.8.11 Loads applied to 
the tendon element 

Table 3.8.12 Tendon Element 
Result Item 
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Geometric Stiffness 

Geometric stiffness or stress stiffness is the stiffness induced by the internal force change when geometric 

shape change occurs in a structure with internal forces. Geometric stiffness is used for nonlinear analysis, and 

the element types on FEA NX that consider geometric stiffness is as follows. 

 

Element type Internal force component DOF component 

Truss Axial force 
xxN  Axial force 

xxN  

Beam Axial force 
xxN  Axial force 

xxN  

Plane stress, 

Plane strain 

In-plane resultant force 
xxN , 

yyN , 

xyN  

In-plane resultant force 
xxN , 

yyN , 

xyN  

Shell 

In-plane resultant force 
xxN , 

yyN , 

xyN  

Bending moment 
xxM , 

yyM , 

xyM  

Shear strength 
zxQ , 

yzQ  

Axial force 
xxN  

Axisymmetric solid 
In-plane stress 

xx , 
yy , 

xy  

Circumferential stress 
  

u , w  

Solid 
Stress component 

xx , 
yy , 

zz , 
xy , 

yz , 
zx  

u , v , w  

 

Apart from this, the geometric stiffness is considered for geometric nonlinear analysis on a rigid link element.  

 

The calculation of geometric stiffness in FEA NX is based on the updated Lagrangian formulation that assumes 

the Jaumann stress rate as an objective stress rate. For example, the internal forces of a solid element are 

calculated from the stress and virtual deformation as follows. 

 

i i ij iju f D dV        (3.9.1) 

ijD  : virtual deformation  
1

( )
2

ji

j i

uu

x x

 


 
 

 

Because the tangent of the internal force corresponds to the stiffness, applying the variation method again 

leads to the following integrand. 

Section 9 

Table 3.9.1 Element types that 
consider geometric stiffness 

9.1  
Geometric Stiffness 

Calculation for 

General Elements 
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ij ij ij ijd D d D        (3.9.2) 

 

The equation above ignores integrands within the integral area. The EFCS of solid elements is the GCS and is 

fixed, regardless of the structural deformation. Hence, 0ijd D   and the stress increment due to the 

objective stress rate from the first term is as follows.  

 

ij ik kj ij jk ijkl kld dw dw C dD         (3.9.3) 

ijw  : spin increment  
1

( )
2

ji

j i

uu

x x

 


 
 

 

By substituting equation (3.9.2) and (3.9.3) into equation (3.9.1) and simplifying, the following tangential 

stiffness can be obtained. 

 

( 2 )i ij j ij ijkl kl ij ki kj ik kju K du D C dD L dL D dD dV         (3.9.4) 

ijL  : displacement gradient increment, 
ij ijD w   

 

The first term of the integrand value is the material stiffness and the second term is the geometric stiffness. 

 

The geometric stiffness of rigid link elements is generated by the force acting on the dependent node. Setting 

the force and moment acting on the dependent node as ,s s
f m , the virtual work due to these values is as 

follows. 

 
s s s sW     f u m θ    (3.9.5) 

,s s u θ  : displacement and rotation of the dependent node 

Applying the variation method again on the virtual work generates the following basic equation for calculating 

the stiffness. 

 
s s s s s sd W d d d        f u m θ f u    (3.9.6) 

 

The following equation is used to convert the dependent node displacement to the displacement and rotation 

of the independent node. 

 

( )s m m s m     u u θ x x    (3.9.7) 

 

9.2 
Geometric Stiffness 

Calculation for Rigid 

Link Elements 
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Applying the variation method again to the equation above and substituting it into equation (3.9.6) can 

calculate the stiffness. 

 

( ( ( )))s s s m m s md W d d        f u f θ θ x x   (3.9.8) 

 

It can be shown that the geometric stiffness of rigid link elements are composed of the forces and relative 

distance acting on dependent nodes, and has a relationship with the rotational DOF of independent nodes.  

When the constraints are lifted for some DOFs of the dependent nodes, the now unconstrained DOF direction 

rotates in the motion of the rigid link element. Figure 3.9.1 shows the NDCS of the motion of the dependent 

node due to the rotation of the independent node, and the removal of constraints also occurs in the changing 

coordinate system. Or when partial DOF are constrained using the rigid link element, the constraint direction 

is not constantly maintained and continuously changes. 

 

 
 

  

Translation

x

y

z
'x

'y

'z

Rotation

Rotated NDCS

NDCS

Figure 3.9.1 Changing dependent 
node DOF direction due to 
independent node rotation 
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Seepage Element 

Various seepage elements exist in FEA NX to analyze the pore water seepage within saturated and 

unsaturated ground. This chapter focuses on the introduction of the governing equation based on the 

continuity equation, the finite element formulation process, and element results etc. of seepage elements. 

The constitutive equation and hydraulic model for unsaturated ground are explained in chapter 4. 

 

 

The mass concentration of water in the ground is 
wnS . When considering the continuity equation of mass 

for micro-volumes, the amount of water escaping from the micro-volume is the same as the change in mass 

concentration. 

 

   T

w wnS
t

 


 


q    (3.10.1) 

n  : porosity 

S  : degree of saturation 

 

The right term of the equation above can be expressed using the changes in water density, saturation and 

porosity with time. 

 

  w
w w w

S n
nS nS n S

t t t t


  

  
  

   
   (3.10.2) 

 

Because the change in porosity with time is not considered in seepage analysis, this term can be ignored and 

Darcy's law can be applied. However, the porosity change is considered for the formulation process of 

consolidation elements introduced later.  

 

FEA NX uses the pore pressure ( p ) as a variable in seepage analysis, and Darcy's law expressed as pore 

pressure can be applied to obtain the governing equation for seepage analysis. 

 

   
1 T T w

g

w w

nS S p
p n

p p t



 

   
     

   
k kn   (3.10.3) 

k  : coefficient of permeability matrix 

gn  : unit vector in gravitational direction 

 

Section 10 

10.1  
Governing Equation 
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In steady state seepage analysis, the pore pressure does not change with time and the differential term for 

time in the equation above is '0'. 

 

Applying the variational method on the governing equation gives the following integral. 

 

   
1 T T w

g ext
q

w w

nS S p
p d d q dS n d

p p t



    

   
        

   
   k kn   (3.10.4) 

  

Here, 
extq  is the velocity of flow at the model surface. Interpolating the pore pressure using a shape function 

in the form ( )i iP N P x  gives the following nonlinear simultaneous equation for time that includes the 

differential term for pore pressure.  

( ) ( ) ( , )i i ext gP P q C P K P R n    (3.10.5) 

 

The integral term for position head in equation (3.10.4) is included as an internal force. 

 

The time integration for the existing time term in equation (3.10.4) consists of the finite difference approach, 

and FEA NX applies the backward difference method. The backward difference method is an implicit time 

integration method that can analyze a long time period, and solution vibrations do not occur. The equation 

with applied backward difference is as follows. 

 

 
 

1

1 1 1
,

( ) ( , ) 0

n n

i i n n n n

i ext

P P
P q z

t



     


C
P P K P R   (3.10.6) 

 

Here, the superscript n , 1n  represents the values at time 1nt  , 1n nt t t    . To calculate the solution of 

the next step for time integration with applied backward difference, the solution of the previous step is needed. 

Hence, the initial conditions are needed for transient analysis, and FEA NX uses the steady-state analysis 

results at the initial time step load, or specifies the water level as the initial conditions for transient analysis. 

 

K and C  from equation (3.10.5) are used to calculate the element tangent matrix and are expressed 

depending on the element type, as shown below. 

 

1D element (Cross sectional area : A ) 

je i
ij

NN
K k AdL

x x




  , e

ij i j

w

N N AdL
p





C  

 
2D element (Thickness : t ) 

je i
ij kl

k l

NN
K k tdA

x x




  , e

ij i j

w

N N tdA
p





C , , 1,2k l   

10.2 
Finite Element 

Equation 

10.3 
Time Integration  

10.4 
Element Matrix  
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3D element 

je i
ij kl

k l

NN
K k dV

x x




  , e

ij i j

w

N N dV
p





C , , 1,2,3k l   

 

Relationship with structural element 

Unlike structural analysis models, the seepage load and seepage boundary conditions need to be defined for 

seepage analysis models. However, because there is no difference in the modeling process between structural 

analysis and seepage analysis when the seepage load and boundary conditions are disregarded, the beam, 

shell, solid etc. elements used in structural analysis can be used to perform seepage analysis. The following 

table lists the relationship between structural elements and seepage elements. 

 

Seepage element type Structural element 

1D element Truss, Beam 

2D element Plane strain, Plane stress, Shell, Axisymmetric solid 

3D element Solid 

 

Apart from the the rigid link, the other elements in the table above can simulate the connected behavior with 

the pore pressure DOF. Elastic links act as a spring for the pore pressure difference. 

 

On FEA NX, the seepage element results are output with reference to a user specified coordinate system. The 

applicability or way of use for each element is the same as for structural elements. 

 

Result article Explanation 

Element seepage 

results 

Hydraulic gradient component 
Position : element center 

xg , 
yg , 

zg  

Hydraulic gradient resultant 
Position : element center 

2 2 2

x y zg g g  g  

Seepage flow velocity component 
Position : element center 

xq , 
yq , 

zq  

Seepage flow velocity resultant 
Position : element center 

2 2 2

x y zq q q  q  

Principal permeability component 
Position : element center 

ak , 
bk , 

ck  

Volumetric water content 
Position : element center 

  

Degree of saturation 
Position : element center 

S  

Table 3.10.1 Relationship between 
seepage element and structural 
element 

10.5 
Element Analysis 

Results  

Table 3.10.2 Result articles of 
Seepage elements 
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Consolidation Element 

Consolidation continuum elements are specifically used to simulate stress-seepage coupled phenomena in 

FEA NX.  Consolidation elements can simultaneously use general structural/special elements or seepage 

elements for seepage analysis to perform consolidation analysis. 

 

The starting points of basic finite element formulation for consolidation analysis are the stress equilibrium 

equation, for porous media with pore water, and the continuity equation of pore water. The discrete vector 

equation can be obtained by considering the coupled stress/seepage analysis, based on the finite element 

formulation process for stress and seepage analysis introduced above. 

 

Consolidation elements use both the displacement and pore pressure as nodal DOF simultaneously. FEA NX 

uses 2 types of consolidation elements, depending on the purpose. 

 

► Total pore pressure based consolidation element, using the total pore pressure as a DOF 

The simulation of transient state seepage phenomena-stress coupled analysis is suitable when the steady-

state water pressure cannot be defined, due to the change with respect to the seepage boundary conditions 

and flow time. It is appropriate for fully-coupled consolidation analysis, where the seepage and structural 

load/boundary change simultaneously. 

 

► Excessive pore pressure based consolidation element, using the excessive pore pressure as a DOF 

The pore pressure can be classified into the steady state and transient state. The user defined initial water 

level or water pressure distribution is considered as the steady state pore pressure, and the excessive pore 

pressure during consolidation is considered as the transient state pore pressure. Simulation of the dissipation 

process for excessive pore pressure is appropriate for consolidation analysis in the general sense. 

 

 or

e e

e e e e e

p steady p unsteadyp p p



  

u Nd

N p N p
  (3.11.1) 

 
Here, N  is the shape function for the displacement DOF of a consolidation element, 

pN  is FEA NX uses low 

order shape functions for the displacement and pore pressure of low order consolidation elements. On the 

other hand, high order consolidation elements have a high order shape function for displacement and a low 

order shape function for pore pressure (Figure 3.11.1).  

 

  

Section 11 

11.1  
Pore Pressure DOF 
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The later part of the formulation process for consolidation elements explains the case where the total pore 

pressure is used as a DOF. The formulation process for consolidation elements where the excess pore pressure 

is used as a DOF is similar, and hence omitted from this manual. 

 

The transient state is the fundamental state of consolidation analysis. The backward difference method is 

applied to the differentiation with time. In other words,  

 

 

 

, 1
, 1 ,

, 1
, 1 ,

1

1

e n
e n e n

e n
e n e n

t t

t t








 

 


 

 

d
d d

p
p p

   (3.11.2) 

 

Here, the superscript n , 1n  represents the values at time 1nt  , 1n nt t t    . The equilibrium equation of 

porous media, with applied backward difference for time, and the continuity equation of pore water can be 

expressed using the following vector equation. 

 
1 1 , 1

1 1 , 1 , 1 , , 11
( )

n n e n

u ext I

e

n n e n e n e n e e n

p ext

e t

  

    

  

 
      





g f f 0

g r C p p K p 0

  (3.11.3) 

1n

u


g and 1n

p


g  each represent the unbalanced force and unbalanced discharge, and are introduced for the 

Newton-Raphson based nonlinear analysis. Also, the internal force of consolidation element e  includes the 

effects of effective stress and pore pressure, and can be expressed as follows. 

 

Node with displacement DOF

Node with displacement and pore pressure DOF

Plane strain and axisymmetric consolidation elements

Solid consolidation elements

Figure 3.11.1 DOF of high order 
continuum consolidation element 

11.2 
Time Integration  
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 '
e

e T e

I e pS d


  f B σ m N P     (3.11.4) 

 

The solution at time nt  can be used to calculate the solution that satisfies the nonlinear vector equation from 

equation (3.11.3) at time 1n nt t t    , and this series of procedures is used to calculate the solution changing 

with time. 

 

Consolidation analysis is fundamentally performed as a nonlinear analysis in FEA NX. In other words, material 

and geometric nonlinearity can be included, and changing material properties due to change in pore pressure 

can also be considered in the seepage equation. The nonlinear solution uses the Newton-Raphson method and 

detailed explanations are provided in chapter 6. 

 

The increment DOF of displacement and pore pressure are defined for nonlinear analysis using the Newton-

Raphson method, as shown below. 

 
1 1

1

1 1

1

n n

I I

n n

I I





 



 



 

 

u u u

p p p
    (3.11.5) 

 

The subscripts I , 1I   represent the I th or 1I  th solution of the recursive calculation. Assuming that 1

1

n

I



u , 

1

1

n

I



p
 
are the converged solution, the unbalanced force of the 1I  th recursive calculation is 0, and the Taylor 

expansion that considers the 1st differential term of the unbalanced force for the converged solution can be 

expressed as follows.  

 

1 1 1 1

1 1( , ) ( , )n n n n u u
u I I u I I     

 

   
          

g g
0 g u p g q p u p

u p
 (3.11.6) 

 

When considering the geometric and material nonlinearity due to the use of nonlinear materials such as large 

scale deformation or plastic materials, the differential matrix for displacement DOF of unbalanced forces are 

expressed as a sum of the material tangent matrix and the geometric tangent matrix, and the differential 

matrix for the pore pressure DOF of unbalanced forces are expressed as follows. 

 

u
mat geo

 
    

g
K K

u
    (3.11.7) 

e

Tu
C e p

e

S d


 
    

 
 

g
K B mN

p
   (3.11.8) 

 
The equation for unbalanced discharge is also expressed in a similar form. 

 

11.3 
Nonlinear Increment 

Solution  



 

 

114 | Section 11. Consolidation Element 
 
 
 

Chapter 3. Elements 
 

ANALYSIS REFERENCE 

114 | Section 11. Consolidation Element 
 
 
 

1 1 1 1

1 1( , ) ( , )
p pn n n n

p I I p I I     

 

    
      

    

g g
0 g u p g q p u p

u p
  (3.11.9) 

 

The differential matrix for displacement DOF and pore pressure DOF of the unbalanced discharge is expressed 

as follows. 

 

1 1

e

p T T

C e p

e

S d
t t



 
      

   
 

g
K N m B

u
  (3.11.10) 

 

, 11p e n e

p

e t


   

         


g
K C K

p
   (3.11.11) 

 

Arranging equations (3.11.7), (3.11.8), (3.11.10), and (3.11.11) gives the following coupled simultaneous 

equation for increment displacement and increment pore pressure DOFs. 

 

mat geo C u

T

C p pt t





      
    

      

K K K gu

K K gp
   (3.11.12) 

 

The total displacement and pore pressure of a node can be calculated by substituting the calculated increment 

solution into equation (3.11.5). This process is repeated until the unbalanced component or the increment DOF 

value is within a certain tolerance.  

 

On FEA NX, the consolidation element analysis results are output with reference to a user specified coordinate 

system. The applicability and way of use for each element is the same as for structural elements and seepage 

elements. The calculated result articles are composed of the structural element result articles for porous 

medium analysis and seepage element analysis articles. 

 

 

11.4 
Analysis Result of 

Element 
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Heat Conduction Element 

The heat transfer analysis of FEA NX is based on the thermal equilibrium equation for transient and steady-

state. In this section, the spatial discretization and the time integration method by the finite element method 

are explained. In FEA NX, only linearly conductive heat transfer elements are supported. Also, since the 

method of shape function or numerical integration is not much different from the structural element, and the 

degree of freedom is expressed by one point (temperature) per node, the analysis can be performed with a 

relatively small calculation cost as compared with the structural analysis. 

 

The transient state energy equilibrium equation considering the increase and decrease of internal heat energy 

due to heat flux, internal heat, and specific heat transmitted to the boundary is as follows: 

. 

qdS rd c Td
  

                                                                      (3.12.1) 

q  : Heat flux 

r  : Quantity of heat generated per unit volume 

c  : Specific heat 

  : Mass density 

 

The relationship between heat flux and temperature founded on the Fourier’s Law is expressed as follows: 

 

( ) ( )i ij ij j

j

T
f k T k T g

x


   

  
                                                               (3.12.2) 

( )ijk T  : Conductivity  

jg  : Temperature gradient  

 

If the Fourier’s Law is substituted into the energy equilibrium equation and a variation is taken, the following 

equation is attained: 

 

( )
q

ij ext

i j

T T
c T Td k T d q TdS r Td

x x


   

   

 
    

                        (3.12.3) 
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12.1  
Finite Element 

Formulation  

extq
 

 

:  Heat flux flowing in from outside 
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If the temperature is interpolated as a shape function of the form of ( )i iT N T x , the above equation 

becomes the following nonlinear simultaneous equation consisted of nodal temperature, which includes a 

temperature differential term with respect to time. 

 

( ) ( ) ( , )i i extT T q r C T K T R                                                   (3.12.4) 

 

In order to calculate the time history of temperature distribution based on the above equation, the backward 

difference method is applied. This method being a type of implicit time integration can perform analysis of 

long time intervals and does not generate any oscillation of solutions. The equation using the backward 

difference method is as follows: 

 

( ( )) ( ( ))
( ( )) ( ) ( ) ( , ) 0i i

i ext

T t t T t t
T t t t t t q r

t t

  
      

  

C C
K T T R        (3.12.5) 

 

The Newton-Raphson method is used to calculate the time history of temperature distribution by repeatedly 

applying the above nonlinear equation to calculate the temperature at the next time step. 

 

The conductivity and capacitance matrices are calculated respectively as follows 

 

► 1-dimensional element (cross-sectional area: A 

je i
ij

NN
K k AdL

x x




  , e

ij i jcN N AdL C  

► 2-dimensional element (thickness: t ) 

je i
ij kl

k l

NN
K k tdA

x x




  , e
ij i jcN N tdA C , , 1,2k l   

► 3-dimensional element 

je i
ij kl

k l

NN
K k dV

x x




  , e

ij i jcN N dV C , , 1,2,3k l   

 

Unlike a structural analysis model, thermal loads and thermal boundary conditions must be defined in a heat 

transfer analysis model. Except for the thermal loads and boundary conditions, its modeling does not differ 

from that of a structural analysis. Heat transfer analysis thus can be performed using the same structural 

elements such as bar, shell and solid elements. The following table summarizes the relationship between the 

structural elements and the heat conduction elements.  

 

 

12.2  
Relationship with 

Structural Elements 
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Heat Conduction Elements Structural Elements 

1-dimensional Element Truss, Beam 

2-dimensional Element Plane stress, Shell, Plane strain, Axisymmetric 

3-dimensional Element Solid 

 

In addition to the elements in the above table, the total behavior of the temperature degrees of freedom can 

be simulated with the rigid body or rigid bar elements. 

 

The analysis results of heat conduction elements in FEA NX are produced in a user-defined reference 

coordinate system. The use of coordinate systems and the methods of using the elements are identical to 

those of structural elements. 

 

Result Items Descriptions 

Element thermal 

results 

Flux component 
Location: Element center 

xf , yf
, zf  

Flux resultant 
Location: Element center 

2 2 2

x y zf f f  f
 

Thermal gradient component 
Location: Element center 

xg
, yg

, zg
 

Thermal gradient resultant 
Location: Element center 

2 2 2

x y zg g g  g
 

 

 

Table 3.12.1 Relationship 
between heat conduction 
elements and structural 
elements 

12.3  
Analysis Result of 

Heat Transfer Element 

Table 3.12.2 Analysis result 
items of heat conduction 
elements 
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Fully-Coupled Element(Thermal-Hydro-Mechanical) 

In FEA NX, the dedicated fully-coupled element is used to simulate the linked phenomenon of thermal-hydro-

mechanical effects. The fully-coupled element is used to perform the fully-coupled analysis by considering the 

degree of freedom of structural element, seepage element and heat transfer element at the same time and 

the relationship between the degree of freedom. 

The correlation of seepage and heat has not been much researched since it is relatively insignificant compared 

to the correlation of structure and seepage. However, the interest of this research has been increased because 

heat has a great influence on seepage and deformation in case of high temperature heat source in the ground 

such as the nuclear waste storage. 

 

 

 
 

In short, the fully-coupled element is an extension of the heat transfer element to the consolidation element in 

Section 11. In the fully-coupled element, deformation, pore water pressure and heat are used simultaneously 

for the degree of freedom of node. Therefore, the following governing equation considers the moment 

equilibrium equation, fluid mass conservation equation and energy conservation equation. Here, the limitation 

is the air pressure is assumed to be constant at the atmospheric pressure throughout the analysis, and the flow 

of air is not considered. In terms of the sign convention, compression is negative (-). 

Also, regarding the degree of freedom, please refer to those of pore water pressure in the ‘Section 11 

Consolidation Element’. Here, in case of quadratic element, the degree of freedom of heat transfer uses the 

lower order shape function same as those of pore water pressure. 

 

 

Section 13 

Figure 3.13.1 Conceptual diagram 
of fully-coupled element 

13.1  
Governing Equation 
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Moment Equilibrium Equation 

 

The linear moment equilibrium equation for small volume of the porous medium is as follows: 

 

0   σ g     (3.13.1) 

  : Density of the porous medium 

g  : Gravity acceleration 

 

 

 

 

And, the total stress of the porous medium which is defined based on the stress relationship is as follows: 

 

 ' (1 )w ap p    σ σ m     (3.13.2) 

σ  : Total stress 

'σ  : Effective stress 

m  : Second rank unit tensor 

p  : Pore water pressure 

ap  : Atmospheric pressure 

  : Effective stress parameter 

 

For more details, please refer to the ‘Section 4 Porous Medium Consideration’. 

Here, if the air pressure is assumed to be constant at the atmospheric pressure, it can be expressed as follows: 

 

' wp σ σ m     (3.13.3) 

 

The constitutive equation of effective stress considering thermal strain is as follows: 

 

 ' ep Td d d σ C ε ε    (3.13.4) 

epC  : Constitutive equation of stress-strain 

ε  : Total strain 

Tε  : Thermal strain 
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And, the thermal strain can be expressed as follows: 

 

T Td dT  ε α m     (3.13.5) 

Tα  : Thermal expansion coefficient of porous medium  

 

Therefore, substituting the equation(3.13.5) into the equation(3.13.4), it is as follows: 

 

 ' ep Td d dT   σ C ε α m     (3.13.6) 

 

The governing equation of deformation can be expressed as follows: 

 

  0ep T wd dT p          C ε α m m g    (3.13.7) 

 

Fluid Mass Conservation Equation 

 

The seepage element mentioned in Section 10 is as follows: 

 

 
S n

nS nS n S
t t t t


  

   
  

   
    (3.13.8) 

 

Although the change of porosity with time is not considered in seepage analysis, because there is no need to 

take into account the structural deformation, the equation can be expanded by considering the change of 

porosity as follows (Rutqvist et al., 2001): 

 

   
 

 
1

v s

s

n
n S S

t t t
    

 
 



    
     

   
q   (3.13.9) 

 

Here,   is soil component, and it is composed of soil particle( s ), groundwater( w ) and vapor( v ). 

Assuming that water and vapor are only existed in void of soil, it can be expressed as follows: 

 

   
 

 
1

v s
w w v v w w v v w v

s

n
n S S S S

t t t

 
   



  
       

   
q q   (3.13.10) 

  : Density 

n  : Porosity 

S  : Degree of saturation 
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v  : Volumetric strain 

q  : Discharge of water and vapor 

 

In the right side of the above equation, assuming that liquid water in the voids between the soil particle  

advections by the Darcy’s law, and gas state water, vapor does not advection, but only diffusions by the Fick’s 

law, it can be expressed as follows: 

 

 w w w

w

 


 
   

 

k
q p g     (3.13.11) 

v v vD  q m     (3.13.12) 

k  : Coefficient of permeability 

w  : Unit weight of water 

vD  :  Diffusion coefficient of vapor 

 

Here, g  is assumed to be constant. 

 

And the density of vapor(
v ) can be defined as follows: 

 

v H vs vs

w v

p
R

R T
  



 
   

 
    (3.13.13) 

HR  : Relative humidity 

vs  : Saturated unit density of vapor 

vR  :  Specific gas constant of vapor  461.5 /J kgK  

 

Using the equation(3.13.12) and (3.13.12), it is as follows: 

 

 v w pv w TvD p D T    q     (3.13.14) 

 

Here, the coefficient of diffusion is as follows: 

 

2

v v
pv

w v

D
D

R T




     (3.13.15) 
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2 2

H vS v w
Tv Tv v

w w

R p
D f D

T RT

 

 

 
  

 
   (3.13.16) 

Tvf  : Diffusion coefficient of temperature 

 

Therefore, the above formulas are summarized as follows: 
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   q q

   (3.13.17) 

0wp  : Reference compressibility of water 

0wT  : Volumetric thermal expansion of water ( 4 12.1 10 293.15K at K  ) 

sT  :  Volumetric thermal expansion of soil particle 

 

Energy Conservation Equation 

 

The heat conduction is follows the Fourier’s law. 

 

T T  q     (3.13.18) 

 

Here, the heat conduction in porous media is defined as follows: 

 

   1 1s w vn nS n S           (3.13.19) 

 

The energy conservation equation of porous media is summarized as follows: (Rutqvist et al., 2001) 

 

    0T w wC Q C T T
t




     


q q   (3.13.20) 

Tq  : Heat flux 

 0w wC T T q  :  Heat flux by water advection 



 

 

ANALYSIS REFERENCE Chapter 3. Elements 

Section 13. Fully-Coupled Element(Thermal-Hydro-Mechanical) | 123 
 
 
 

 

Here, the heat capacity in porous media is as follows: 

 

 1 s s w w w v v vC n C nS C nS C         (3.13.21) 

 

The above formula is summarized as follows: 
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k k
p g p g

(3.13.22) 

 

By transform and discretization the governing equation, the matrix formula can be defined as below. It can be 

represented in an expanded form including degree of freedom related to temperature from the equation 

(3.11.12) of the consolidation element. At this time, the diffusion of vapor is considered additionally. 
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  (3.13.23) 

Here, 
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13.2  
Finite Element 

Equation 
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The analysis result of fully-coupled element is printed according to the coordinate system specified by the user. 

The calculated result item is consist of structural element result for the analysis of porous medium, seepage 

element result and heat transfer element result. 

 

 

 

 

 

 

13.3  
Analysis Result of 

Element 


